TUGhboat, Volume 4, No. 2

My TEX quiz question is:
Design a smarter maero to do the line breaking,
capitalization, and font switch automatically:

\beginchapter Two owl-shaped ...

Paragraph with dropped initial
Consider:

ery often a fancy book
will begin chapters with a
dropped initial like this ...

ery ...

Note that it’s not will ...

Question:

How can TEX be made to do this generally?

Editor’s suggestion: Since TEX is privy only to
the font metrics, which do not include a specific
definition of character shape, this type of kerning
doesn’t seem possible without providing further in-
formation. But if one specific alphabet were always
to be used, it might be possible to provide several
additional values for each letter, e.g. the proportion
of the letter’s width at several heights chosen such
that the appearance of a text letter set beginning at
that point would have a pleasing appearance.

¥ % x % x k¥ x ¥ ¥ ¥ %

Letters et alia

OBSERVATIONS ON TgX
FROM A DIVERGENT VIEWPOINT:
A CRITICAL COMMENTARY

Some years ago, the American Mathematical
Society began use of a computer typesetting pro-
gram written by Science Typographers, Inc. (STI)
for composition of many of its mathematical pub-
lications. At the time, the Society found the STI
language the most effective and efficient of the com-
puter composition languages which were intended
for setting complex mathematical formulations and
were available for testing.

During the years since, Jim Roesser and Roger
Jones, co-founders of STI, have worked to im-
prove the language, adding new features—many at
the Society’s request—and increasing its versatility.
When TEX appeared on the scene, the AMS began
investigating its potential as a language by which
authors with access to computing systems might
communicate their manuscripts to the Society in
ways which could eliminate some of the costs of
scientific publication. TEX showed much promise in
this area, and considerable effort has been, and is

81

being, expended to see whether this promise can be
realized.

(Both systems have their strengths, however, and
it is likely that the AMS will continue using both
well into the future. TEX itself, in fact, is still in
limited production use at the AMS for typesetting
mathematical literature; the STI program continues
to be relied on heavily for that. TEX is in regular
use at the Society for typesetting material requiring
very complex page layouts which the STI program
would handle with greater difficulty. We expect that
TEX82 will be put into production use for mathe-
matical typesetting during the first quarter of 1984.
Here and elsewhere, of course, TEX has been used to
typeset very many mathematical documents.)

Jim and Roger have followed with interest the de-
velopment of TEX at Stanford, at the Society, and
elsewhere. Both have attended TUG meetings. At
the meeting at Stanford in July, Jim was often eriti-
cal of TEX’s approach to mathematical typesetting.
Thinking that the TEX community might benefit
from Jim’s criticisms, I asked him to write them into
an article for TUGboat. Jim declined, but told me
that he would write up some comments for his own
staff from his notes. He promised to send us a copy,
which we could use as we liked.

The following article is Jim’s analysis, unedited.
His criticisms are occasionally sharp, but generally
are based on his very great experience as a math-
ematical typesetter. We publish it in the hope
that, where his criticisms are well-founded, the TEX
community may move the development of TEX in
directions which answer them. If so, we will have
benefited.

Following Jim’s article are commentaries by Don
Knuth, Dave Fuchs, Mike Spivak, and Richard
Palais, and, lastly, by Barbara Beeton of the AMS,
who, probably more than any other person, is
qualified to compare the strengths and weaknesses
of the TEX and STI programs. The series closes with
a final statement from Jim. TUGboat will welcome
constructive responses to any of these statements
from its readers.

Sam Whidden

* k% X *x k% *k kx ¥k 3k ¥k

Editor’s note: Camera copy for Jim Roesser’s
memo was prepared at Science Typographers, Inc.,
using the STI typesetting program. The typesetter
was a Harris 7400, and fonts from the Times Roman
family were used.

82

TUGboat, Volume 4, No. 2

TO: STI Staff
FROM: J. R. Roesser
SUBJ.: TgX Users Group Meeting, July 1983

I. Introduction TgX is a mathematical typesetting program developed by
Donald Knuth of Stanford. It is necessary that we understand TgX.

1. It is a competitor.
2. We may learn from it.
3. We will soon begin to receive manuscripts coded in TgX.

What follows is based on my notes taken during the meeting. I shall begin
by attempting to explain the TgX philosophy, i.e., what TgX is trying to
accomplish. Part III will be a description of the meeting. Part IV lists the
things which TgX can do and STI cannot. Part V is a critique of TgX. In

general [will attempt to see if TEX is accomplishing its goals. Part VI is a
summary.

II. TgX Philosophy TgX was developed to provide cheaper and higher
quality mathematical typesetting. (If we project ahead and consider elec-
tronic output perhaps we should replace “typesetting” with “communica-
tions.”) This is to be accomplished by the following steps.

1. Develop a high quality math typesetting program (TgX).
2. Provide it free of charge so that it becomes the standard for the
mathematical community. Thus it will be used by:
i) The AMS
i) Individual authors and institutions, and
iii) Commercial typesetters.

3. Develop fonts (METAFONT) so that TgX will drive the new laser
printers and, thus, provide easily accessible, cheap output.

The proliferation of TgX would guarantee good, high quality, inexpensive
communication. Further, it would make author-generated copy realistic.
The AMS (see E. Swanson, TUGboat Vol. 1, 1) seem to believe that
author-generated copy will provide great cost advantages.

IIL. July Meeting The first two days of the meeting were used by Michael
Spivak for a short course in the use of AMS-TEX82. AMS-TEX82 is a
particular version of TgX. The AMS prefix refers to a set of “macros”
developed by the American Mathematical Society which simplify input.

TUGDboat, Volume 4, No. 2

1 must digress here to explain what is meant by macros. The STI
typesetting program has evolved over the past 12 years by sampling many
thousands of pages of author copy. We have tried to consistently incorpo-
rate into our program a complete set of capabilities. The developers of TEX
have had at least two orders of magnitude less material available for
examination. The TEX program is thus quite general and, therefore, ineffi-
cient. For efficient use it requires an adjunct program (in this case AMS
macros) for input. These macros are just the sort of input functions which
are already in use at STI. Furthermore, because STI has developed its input
functions by large scale sampling, STI’s are much more complete.

The TEX people believe that their flexibility is an advantage because
each author can set his paper exactly as he wants it set. As we went through
the meeting [tried without success to find examples of this flexibility. The
truth appears to be that TgX is imposing a serious and unnecessary
limitation on its ability to communicate and that as it evolves it will be
recognized that most of this “flexibility” must be removed. AMS-TEX82 is
a step in this direction.

End of digression.

This two day session was interesting because the typesetting problems
discussed by Spivak were all old friends. That is, problems which we had
seen and solved years ago.

Now for some high points.

a
1. A question from the floor: “I have set the fraction -iz and the 'y’ is

too far above the fraction bar.” Answer: “Use the command
\botsmash to make the program think that a, has no depth. This
will, unfortunately, make the y print on top of the fraction bar. So
we use \vphantom(to give enough depth to clear.”

Need I continue? This is rubbish.

2. Muzch was made of the use of macros for keyboarding. Consider
9°G
dx,0x;
case for i and ;) and only keys that macro for the many occurrences
of the fraction. This seems a good feature for an author. I asked
Spivak if he thought there was an advantage here for a production
typist. He did not really understand the question. His reply was that
anyone with sense would see that less keystrokes are better than

more keystrokes.

About eleven years ago I would have agreed. In fact we were
surprised that our production keyboarders had never used macros in
this way. Finally we realized that such a fraction is 27 keystrokes and
requires only about 10 seconds for keying. Contrast that with the
time required for the keyboarder to break rhythm, make sure it is the

. One makes a macro (in TgX) with two parameters (in this

83

TUGboat, Volume 4, No. 2

right form (particularly if there are a number of macros), note what
the parameters are, and, finally, key the macro.

Some random comments.

1. Space is used as a delimiter. If one were to list a set of axioms for a
good input language the first would be: “Choose as control codes
and delimiters characters which appear infrequently in ordinary
copy.” The use of spaces clearly comes from the programming
background of the TEX developers and is the worst possible choice.

2. Goes all around the barn for double spacing after sentences. Is it
worth it?

3. Question about automatic intercharacter spacing. Spivak claimed
that TgX always did this properly. Roger reported from last year’s
meeting that it was a big problem. I checked with Joe Fineman who
has seen a fair number of TgX-set papers. He said that the interchar-
acter spacing is poor.

4. 1 do not like the mnemonic input (more later).

5. Sizing of parentheses is awkward. There are four ways in TgX to key
parens (which, of course, require a choice by the keyboarder). First,
hitting the regular paren key will give a normal one line paren.
Second, for a little larger paren key \b1ig(. Third, to enclose a 2 line
function key \bigg(. Last, for a paren which will size key \left(.
The last case requires a match. Our automatic sizing is clearly
superior.

If you are interested in more specifics on the TEX input language please see
me.

The next three days were used to discuss problems and developments
with TgX users. On the first morning there was a talk by D. Knuth. He
promised that TEX82 (which was due for release in August 1982) would
finally be ready on July 20, 1983. He said that he had gone through 20
versions of the program since October 1, 1982 but was now ready to
distribute the final error-free version. When he was later asked how it would
be maintained he said that he would personally fix the few problems which
might arise.

This presents another flaw in thinking. The reason that TEX has taken
so long to develop is that mathematical typesetting is a complex problem.
To believe that no maintenance is required is terribly naive.

The next problem for TEX is who will maintain TgX? If it is continu-
ally changed by the users, then the goal of good communication will be lost.
If an organization is to maintain TgX it will be a very, very expensive
proposition.

TUGboat, Volume 4, No. 2

Knuth then stated that the manual (TEXBOOK) will be available in
bookstores by October. Volume 2 will be on METAFONT and should be
available in about 2 years. He also mentioned that TEX82 requires about
one-half of a megabyte of core.

IV. TgX yes; STI no The following items are available in TEX but not in
our program.

1. Our page make up program is not yet complete. The part that we
are using is, however, superior to TEX’s.

2. Multiline justification. This is certainly a necessary addition for us.

3. Automatic double spacing after sentences. An unnecessary compli-
cation for the keyboarding.

4. Automatic positioning of footnotes. These “SCRIBE-like” features
are desirable for author input but not so important for production
typesetters.

5. Fewer keystrokes for superior/inferior. Note that Computype

changed the STI input for down and up arrows for subs and supers.

This gives one less keystroke.

Macros may be redefined and may have arguments.

. Arrows over groups of characters. This is on our list for inclusion.

. \vphantom can be used on functions as well as single characters.

. Sized fences match generally. That is, (matches], etc. This makes

for simpler keying for cases of (]. However, in the great majority of
cases it eliminates a very nice error checking ability.

© 0 1 O

10. Allows alignment of equations on other than equals signs. It must

in all cases be marked.

11. It appears that TgX has a superior hyphenation package. We are
now looking into obtaining this package for inclusion in the STI
program.

V. Critique In order to see how well TEX is likely to meet its goals, I will
first list what I consider significant problems in TgX. This is by no means a
complete list. In particular I will be unable to provide a list of STI
capabilities which are unavailable in TgX. This is because there is really no
easy way to examine the TgX capabilities (see 7 below).

1. 1 consider the greatest problem to be that TEX does not have a
standard simple supported input language. The idea that a desirable
flexibility is achieved by allowing each author to define his own input
language will prevent TgX from meeting its goals.

85

86

TUGboat, Volume 4, No. 2

A math typesetting program, if it is to be of real value to the
mathematics community, must be efficient for both authors and
commercial typesetters. Consider first TgX’s use by authors. For the
occasional author it is a distinct disadvantage to have to define
macros. Authors require a complete input system so that they will
not waste time redoing what has already been done.

Next consider the commercial typesetter. For standard manuscript
input someone would be required to scan each manuscript and define
macros. For author-generated input think of the problem when every
manuscript is presented with a different set of macros. This wiil
introduce handling costs which will more than offset the cost ad-
vantages of author-generated copy. (In this case STI has had experi-
ence with a number of author tapes. I can assure you that what I say
here is true.)

Finally, note that the reason for this emphasis on flexibility is that
the designers of TEX are designing on the basis of theory exclusively.
STI has dealt with hundreds of authors and hundreds of thousands
of pages of math. We have found out experimentally that it is not
only feasible but necessary to have a complete input language.

. Another problem of similar magnitude is the lack of a system for

maintenance of TgX. The two possibilities mentioned above (user
maintenance or an organization for maintenance) are both unlikely.
The first will cause a divergence of the program. The second can only
be provided by a commercial organization. This however brings out
the question of whether the TEX emphasis on being a noncom-
mercial system is in fact an advantage.

. Part of the reasoning behind the TEX development is faulty. Con-

sider the following quote from an article by Richard S. Palais in
TUGboat. “Anyone who looks at the process for producing scientific
journals must be struck by the tremendous wastefulness of human
time and effort it entails. After the author in collaboration with
technical typists, referees and editor has at great effort and expense
created a supposedly error-free typescript, the paper is sent out for
composition. What happens next seems almost ludicrous. At more
great effort and expense (and with all good will) the compositor
introduces dozens or even hundreds of errors in the proof version of
the paper. At additional effort and expense these errors are labori-
ously removed until the paper is at last ... finally back in the form
in which it was sent to to be composed. This activity of adding errors
and then removing them is actually responsible for half the cost of
producing the journal.”

This is nonsense. One is tempted to ask who his compositor is.
Factually he is incorrect in several instances. (1) Authors seldom, if

5

TUGhboat, Volume 4, No. 2

ever, present error-free manuscripts. (2) Decent compositors seldom
introduce dozens (certainly not hundreds) of errors. (3) The sum of
the costs for printers’ errors and authors’ errors is not even close to
half the cost of producing the journal.

Thus TgX is attacking a problem which it does not seem to have
adequately defined. To assume that author-generated copy will solve
publication problems one must approach the problem in a scientific
manner. Ask the following questions. (1) Is the average author able
to do a high quality job of keying his manuscript? (After handling a
number of author tapes I would say no.) (2) Will mathematics
Jjournals accept the lower quality and inconsistent typesetting which
will come from authors? (3) Will the savings achieved by author
input balance the extra charges which will inevitably be required for
receiving author input?

These questions must be answered experimentally over a period of
time. To assume their answer now is naive.

4. Next is a controversial subject. I do not like TEX’s use of mnemonics
for input. Mnemonics assume that the best way for a keyboarder to
key a special character is to first think of the name of the character
and then to truncate the name to obtain a four or five character
mnemonic. This reasoning breaks down in two ways. First, a produc-
tion keyboarder is unlikely to know the names of most math sym-
bols. Secondly, when a large group of symbols is available it is
difficult to guess the truncation.

I believe that a better way to access special characters is to group
such characters in classes (arrows, canceled symbols, Greek, etc.).
This has three advantages. First, if the symbol must be looked up a
smaller set is involved. Second, fewer keystrokes are needed. Third,
we found from analyzing our production keyboarders that they do
not follow the sequence; see a symbol, identify it by name, obtain
(by memory or look up) the code and key. The second step is left
out. Therefore the use of mnemonics would lower their efficiency. If
the symbol must be looked up the non-mnemonics have a further
advantage that they all fit on a single page (see enclosure).

To close this subject consider that TgX uses \binom ab for (Z)

How many production keyboarders know this is the binomial coeffi-
cient? Similar questions may be asked about most of TgX's
mnemonics.

S. Intercharacter spacing is poor. This is one of the most important
factors determining the quality of output. Until it is corrected TEX
will never be able to provide its advertised high quality.

6. Table capabilities are primitive.

88

TUGboat, Volume 4, No. 2

7. User manuals are only usable by programmers. In general my
impression is that TgX was written by programmers for other
programimers.

8. TgX does not have the auxiliary programs which help make the
process of composition easier. Consider how much more difficult our
task was before we had the check program, fotrun, and the ability to
set patches.

1 believe that the above limitations will restrict the use of TgX to those
individuals who are willing to invest considerable time in training/study. It
is not now nor will it become a program which can be used by occasional
authors and production typesetters unless there are drastic changes in
direction.

V1. Summary There is an interesting problem here. I believe that STT's
typesetting program is clearly superior to TEX. By the end of the year we
should be able to incorporate the few features noted in part IV above. The
more important points where STI is ahead of TpX are not so easily
acquired. Thus STI should be able to continue its advantage. Yet the math
community (led by the AMS) continues to see TEX as the answer. 1 get the
impression that STI is not even seriously considered. Why?

Part of the answer is the emphasis on TEX being free. When will it be
realized that this is, in fact, a disadvantage. Perhaps STI should let it be
clearly known that we are interested in providing our program to the math
community on some mutually beneficial basis.

This, however, would probably not make much impression because of
the second problem. That is, the average mathematician is quite limited in
his knowledge of typesetting problems. Because of Knuth’s reputation as a
programmer many mathematicians are unwilling to consider any solution
other than TgX. If we were considering only a programming problem
perhaps this would be justified. In this case, however, the human interface
with the program is of greater importance.

89

TUGDboat, Volume 4, No. 2

WHAT YOU SEE IS WHAT YOU GET

T ooz s S R|2EeEeRl8Sn OaA|e ARSRIREANRRFIY (ISR RInEIRIENR T e RS
O N UV V|- OIL Mo ECO|ODT LUV ITIS>SEX XN NOTNMITNOMNO|[ON » NN e e 1 e =2 (S [}
m < []
@ 2|8 1 1t 0|t aom | S SN I N~ -1 v 0 > CEE T T T | C
bl &u.cweiubllhn_,o:@ 9. .ak D>Co<|00ORD|uNyY MV agbvaPK . O|cakrw| @ U]
8
CslznornVAceaQY cun|ld=el! D>CB<|Ho®®. |+ €fdaVAAVar vya|3C/NO o] , 82|
Tal< v @ €|, VXRR| B ES[DSEN<E] |y g e ¥ o |8 o B Oy ey | T Ay
Lo} . .
falpmoe 8{VAe@|{BVHRAE_ ! = _aa X x [@& To | e o o [T Bt N Lo s T He IS
Ccoluuyninde A¥x A Uit § Vialmx 38 2|2 cviARvi A o 3 8 [VRARS © M| A VEAIYEAR | YRARDI It [UN (Y 9 A OIS # W
Wm C__C_CD__D.D»_o_aP. h«ws ANl =g g ¢ _ VIEAIVEHLALS 8 U — | VIARY AVIAANIVYL AL YRARIY A Y A WU djy A LI X
L ®lw eSSl @ M e e e oy b
" EREBRE oB .5 o/ BEENBS(HEEBRERE SHAaEN | {eEERN EENNEER NEEEN ENEERNN EEEEE EEEDN
il mmaIHud X Sr|drSmolEr nLE » aEHERA oo ~co|dno~ oo IO N T N M —
.W.M SO HHLV B LRIk dmolRP ccoribmnHHA| oo~ M| o~ 0l mrmnir |~ w2 - PR
rlemPaume D >idaSzolEBEore=a POmssa v o0 v 0 oy v r ey v (T T I B
M.w B 2w w| O ~F L D)< 3a ok Q0 |F@BDwalsal | v w gulb | R|lor 1 1 [R | [T | [O R
— |
P ilamoowlnOT_=|2uSzZ20(a0@dnr 033X > Nemanm|(tow @~ ®|® - -~ |l e o 1 [ammte o o
SlmmuwuiiEgmmlesabaRdsisoSwslo ol o ooy e R
mm co oo ule DG e w Eg ol e a2 B st o b e [I N R |
S R R N NN AR R L R R NS RN SN | PPNy POV TP NSRRI FPSR NS
* & 8% o M e Ly R g wms e s Y AN} RO~ |TnOoe~ 0| . - o 4 e - ——t
v 3
* Z|le® 1 & VL Il 1 1 O WS | | I — 1 1t @O 1) ot yE b LA R A R | I - - VA I | [T I S |
ClamoowluwT - M IEZO|ILT XOE D>2>FIX>INOCNM{IETINONO[ON * Nryee o~ I |wmer=—s | vAaA@ O
R e .
x lonoov el ~ix—o ECO I > X XNINOecaIMIINOMNOIN * vsve oA~ v umerar e+ N1

D.Q.P%.t

90

Comments on Jim Roesser’s Memo
Don Knuth

Here are a few comments from the (admittedly
biased) author of TEX.

If TEX has been based on “at least two orders of
magnitude less material” than STI, then STI must
have been based on many millions of pages, not just
“many thousands,” because TEX has been based on
experience with many tens of thousands of pages,
covering a very wide variety of material.

It is quite true that the old version of TEX pro-
duced bad spacing on fractions, and “a sub y over
2”7 is one of the many bad examples. But TEX82
does hundreds of things better than TEX80, and
fractions is one of the things it does right; that
formula no longer needs any corrections. On the
other hand, I believe that no fully automatic system
will always produce the best results, so there should
be easily understandable ways to tune up formulas in
the small percentage of cases where a person wants
to do it.

Most of the other criticisms of TEX in Mr.
Roesser’s memo are quite valid criticisms of the old
prototype version. But I'm confident that the new
version resolves the problems; I've had valuable in-
put from so many people, I'm willing to believe that
a mature piece of software has been developed. Time
will tell; I have been wrong before.

I completely agree that keystroke minimization
is not extremely important to a production typist;
rhythm is far more important. It’s not very often
that I find it better to use macros in individual
formulas, except for things like accented letters. So
when Mike Spivak reported to me that somebody in
his course had been unable to see why his examples
of macros were so great, I knew that the (unnamed)
critic was a person of wide experience. Macros aren’t
for everybody, especially not macros that have to be
made up on the fly. However, I suspect maybe one
paper in four or five will involve a couple macros
that will improve a production typist’s speed and
consistency; so I have recommended a quick glance
through the paper to see if there are any obvious
candidates for such simplifications.

I do believe that the new TEX will require no
maintenance, but that’s only because it is a general
substructure on which you have to hook front ends
and back ends. The front ends and back ends
should, naturally, change as better ideas are found;
but I see nothing terribly naive about the utility of
a stable, powerful, machine-independent, and well-
checked-out “fixed point” in the middle. Indeed, the

TUGboat, Volume 4, No. 2

stability of the new TEX should simplify all other
kinds of maintenance.

1 also agree that mnemonics are not best for
everyone. Again, however, that’s not a TEX ques-
tion; it goes into the front end. What I've tried to do
is provide a solid tool for typesetting, but of course
I have not resolved all the problems. I hope that
when people see the new system they will find that
I have solved some problems reasonably well.

My main worry right now is that too many people
are still using the horrible old TEX; how can we
stamp it out?

* % ¥ X *x ¥ *x % % * Xk

J. R. Roesser’s Memo on TgX Meeting
David Fuchs

A reading of J. R. Roesser’s memo indicates that
he has not fully understood much of TEX. His criti-
cisms of TEX seem to be based on misconceptions,
stemming either from misunderstanding how certain
features work or from misunderstanding how they
effect the efficiency and usability of TEX.

For instance, consider “high point 2”. What he
shows is indeed the example used in the short course
to motivate the idea of user-defined macros in TEX.
It was not necessarily meant to be the best example
in the world, nor, I'm sure, did Mike mean to imply
that a production typist in any way “must” use
a macro to produce such a fraction. Indeed, as
Mr. Roesser points out, an experienced keyboarder
might well decide to enter such fractions without
the aid of any macros. Nothing in the TEX system
forces the user either way in this regard. '

Some of the other comments are a bit mysterious.
For instance, “random comment” number 2 com-
plains (I believe) that TEX automatically handles
the extra space that should appear at the end of
a sentence. There is nothing to complain about
here, since 1) it doesn’t make the program any less
efficient, 2) it makes TEX a little easier to use, and
3) if you don’t like this feature, you can easily turn
it off any or all of the time. This feature is also ad-
dressed in section IV, point 3, where it says “an un-
necessary complication for the keyboarding.” This
incorrectly implies that the TEX user has to do some-
thing special at the end of the sentence; in fact, the
extra spacing is automatic (as is extra spacing after
commas, semicolons, etc.).

“High point 1” is presented out of context and
is thus misleading. Clearly, different people have
different ideas about math composition. I doubt
that anyone claims that any system can please all

TUGboat, Volume 4, No. 2

the people all of the time. I suspect I'd get general
agreement that no system can even please a single
person all of the time. That’s why it is important
to provide escape mechanisms that can be used to
adjust things to the user’s taste.

TEX also adjusts to the user’s taste in mnemonic
versus non-mnemonic input. It is hard to un-
derstand Mr. Roesser’s remarks regarding whether
mnemonic input is any better or worse than non-
mnemonic. Although one widely used TEX format
defines mnemonic control sequences such as \alpha,
TEX is flexible enough to also allow the user to say
@12 or >AB or anything else that the user would
prefer. Moreover, this capability can be used with
no performance penalty. While in a production en-
vironment, short codes may be preferable, can you
imagine telling mathematicians, engineers or scien-
tists that they must say ‘*gq’ instead of ‘\theta’,
‘*n7’ instead of ‘\notin’? TEX users can do either,
or both!

On the other hand, any large system will always
have some of its own lingo for experienced users,
whether it looks like ‘\botsmash’ or ‘*XY’. In the
particular instance referred to in “high point 17,
it turned out that \vphantom and \botsmash had
recently been discussed, and thus Mike was answer-
ing the question in a reasonable way. If a user
doesn’t like the spacing around a fraction bar, there
are a number of other ways to deal with it, such as
with \lower and \raise.

I've never heard any complaints about TEX’s
“intercharacter spacing”. Perhaps Mr. Roesser was
looking at some old output, or output produced on
a low-resolution printer, or output from a buggy
device driver. Perhaps not, in which case I'd like
to hear some more specifics so that I can comment
intelligently. (An example of a case that shows poor
“intercharacter spacing” would help.) In all the
feedback we’ve received from the folks at AMS who
have been involved with TEX since the beginning,
they have reported no such problems.

Even if there were something wrong, TEX's
“intercharacter spacing” can’t be flawed beyond all
hope, since the whole system is table-driven with
regard to all spacing; simply correcting the tables
should fix any problem. In fact, this flexibility
allows TEX to use any font for any device from
any manufacturer, provided that the user is able
to give TEX the character width information that
any front-end system requires to do line breaking.
A number of installations are using TEX quite hap-
pily with non-Metafont-generated fonts in text. Any
problems with spacing in these cases is strictly due
to deficiencies in the design of the typeface and

91

the side-bearing values provided by the manufac-
turer. The problem of using different fonts in math
material is admittedly more difficult because more
than just the width of each character must be sup-
plied; but again it is not insurmountable.

About Mr. Roesser’s comments concerning how
large a sample of material has been evaluated for use
with TEX, I submit that the AMS folks have seen
more in the way of unusual copy than everyone else
put together, and I’'m not aware of any complaints
they have about anything that TEX simply won’t do.
Also, T'll wager that there are currently more TEX
users in the world than STI users, and we haven’t
heard anything along these lines from any of them,
either.

Authors using TEX, Scribe, and other systems
have successfully prepared their own copy. I will not
comment on whether or not the compositor intro-
duces significant numbers of errors, since the AMS
knows more about this than I. It is important to
realize, however, that just because an author has
provided computer-readable input, does not mean
that the AMS is bound to use it verbatim if it does
not meet their stringent standards. Obviously, the
AMS should expect authors to use the AMS-TEX
package correctly, in which case the number of cor-
rections that must be done will be no more than had
the author not provided computer-readable input.
If the author’s tape is so bad that less work would
be required to re-input it than to correct it, then
once again, the AMS is no worse off than it was be-
fore. I must point out, contrary to Mr. Roesser’s ex-
perience, that we have run off thousands of pages of
phototypeset TEX output prepared by various out-
side authors, and we are quite pleased with most of
the results.

It is important to realize that authors need not
all go off doing things in non-standard ways us-
ing their own macros. A large number of papers
can use plain TEX as-is, without any author-written
macros whatsoever. Most of the rest can rely on
the AMS-TEX package to fill in the remaining gaps.
Only in unusual cases should the author need to
worry about doing any macro writing at all; and
even then probably a few macros would be plenty
for any paper. The user need never even know the
distinction between the facilities provided by TEX
and those handled by AMS-TEX; indeed, much of
what is documented as being part of “plain TEX” in
the user’s manual is actually done with a standard
set, of macros that are considered part of the basic
system.

Because TEX was designed from the beginning
to be a host for such packages, it is easy to see

92

that AMS-TEX is not an “adjunct program”, but an
integral part of ome of the many applications for
which TEX can be used. TEX macro packages are
the basis of the systems’s great flexibility. TEX is
just like Fortran in that it is a compiler that can
be used to create programs that are useful to many
people. No manufacturer of large mainframes would
presume to sell a computer with a bunch of pro-
grams bundled in, and claim that those programs
should be good enough for all possible uses that the
purchaser could possibly want. Rather, manufac-
turers take pains to produce efficient compilers for
languages like Fortran, Cobol, Pascal, etc., so that
the users can do their own things when necessary.
TEX macro packages are typographic in nature, but
just like any other computer language, there are
simple programs that can be written by novices,
and more complex programs that require more ex-
perience to write, while ordinary folks simply use
the programs created by others.

When authors are presented with a system
tailored to their needs (such as AMS-TEX for math-
ematicians and I#TEX and Fécil for Scribe-like ap-
plications) they actually avoid doing anything in-
compatible so that they can use the handy features
of those systems. Our experience with the old ver-
sion of TEX is that most of our local users used the
Facil package because it was tailored to the sort of
document they were producing. The only users who
wrote large numbers of their own macros were those
who required a much different document design than
is provided by any of the existing packages. For
the new TEX, the I#TEX package promises to be the
most popular for non-math applications.

Mr. Roesser’s “digression” implies that a good
typesetting system has all of its features hardwired
in. If STT wants a new feature, they put it in the
code. If anyone else needs a new feature, they can
try to talk the STI poeple into putting it in for them,
with the risk that they’ll be told that since it hasn’t
been needed in the last 12 years, it must be a bad
idea. If STI should go under, then everyone is out of
luck. Mr. Roesser must not have been paying much
attention to Leslie Lamport’s talk, if he couldn’t
find any examples of good uses of TEX’s flexibility.
I also can’t imagine what he’s thinking when he says
that the flexibility lowers efficiency. The fallacy of
his position is easily seen in his statement “We have
tried to consistently incorporate into our program a
complete set of capabilities.” Even twelve years is
not enough for this never-ending task. No program
can be all things to all people. Only a flexible pro-
gram with a TEX-like approach can possibly survive
in anything more than a small niche.

TUGboat, Volume 4, No. 2

The text editor EMACS, in use at MIT, Stanford,
AMS, and many other locations, is an example of
a large software system built from a primitive but
powerful base. (EMACS sits on top of TECO, and
its name is a short form of “TECO Macros”.) The
unsurpassed flexibility of this system can be seen
from the fact that it can handle new applications
that weren’t even conceived of at the time the sys-
tem was designed. For instance, there now is a
“TEX-mode” available in EMACS that makes entry
of TEX material easier through automatic match-
ing of braces, etc. The flexibility of being able to
layer macro packages on top of TEX is one of its
strongest features. Not only is this not inefficient
(indeed, it even saves memory space), it conforms
with the current notions of good programming prac-
tice generally accepted by the computer community:
Modular, layered software, table driven wherever
possible. Because TEX can be built upon, features
can be added without changing the underlying code.
For instance, the basic table formatting capabilities
of TEX are indeed “primitive”, but they are also
very powerful. They are designed to provide a
groundwork on which virtually any possible table
can be built.

Using the layered approach for TEX has many ad-
vantages, including: 1) Users who need a new fea-
ture will not be (rightfully) frightened away by the
prospect of having to alter a large, existing program.
2) Adding a feature does not mean becoming incom-
patible with other installations (the TEX program
remains the same, other people’s TEX files will still
work no matter what any user does). 3) Because TEX
itself need not being modified to add new features, it
iz more stable and is much less likely to have any new
bugs introduced into it. (Any programmer will tell
you that adding a feature to a large program is fairly
likely to add new bugs, especially compared to the
likelihood of finding a bug in a program that hasn’t
been changed in months and has no known bugs.)
The very flexibility that Mr. Roesser criticizes al-
lows sophisticated users to tailor the TEX system to
their own needs without in any way impacting on
compatibility and maintainability!

Mr. Roesser has some unfounded fears about the
maintainability of TEX. It is quite clear from prior
experience that any bugs in TEX will be fixed by
Prof. Knuth. It is in his own interest to do so, since
he uses the system for his own books. The original
SAIL version of TEX had its share of bugs over the
years, and all of those were fixed here at Stanford.
1 see no reason why the same will not bold true for
the new TEX. In fact, there are no known bugs in
the SAIL version of TEX, and that’s after a period

TUGDboat, Volume 4, No. 2

of only a few years of its being in general use. Since
the new TEX has a very similar program structure
to the old, there is good reason to believe that it
will take even less time to reach a mature level. It
is already in active use at a number of installations,
and the rate of bug reports is very low. To date,
everyone who has found any bug has reported it to
the TEX project, and there have been no problems
due to incompatibilities from disparate bug fixes.

Well, what if Prof. Knuth is hit by a train? Bugs
in TEX will still not be a problem, because of the
unprecedented internal system documentation. All
of our source code is available to interested parties,
and in fact some of the bug reports we have received
have been of the form “in module vvv line www,
you should change xxx to yyy, to avoid a bug when
223" . Of course, the average user should never have
to look at the program itself, but it is quite a relief to
know that it’s there if needed. In fact, a number of
large companies are using TEX in-house and TEX82
can’t be available soon enough for them. They are
not worried about support because they have looked
at the code of TEX82 and are confident that it is
maintainable, flexible, and efficient. Initially they
became interested in TEX because of Prof. Knuth’s
reputation in the computer community, and they are
happy with our track record to date for fixing bugs,
but they also know that their own programmers are
quite capable of delving into the system in a pinch.

At least four companies are coming out with
TEX-based products, including such large firms as
Hewlett-Packard and such up-and-coming concerns
as Intergraph. They know they can support a pro-
gram like TEX on their own, or they would not be
spending the large amount of money necessary to
bring these products to market. Right now, anyone
who wants traditional support for TEX can buy an
HP9836 computer with the TEX package, and they’ll
get it from HP. Note that TEX82 isn’t even officially
released yet; I expect more companies to pick it up
as a product in the future.

Because TEX is in the public domain, anyone who
wishes to write an output device driver is free to do
so. For instance, Imagen, Symbolics, QMS, IBM,
Xerox, etc., have produced TEX-compatible laser
printers without having to make any kind of deal
with anyone. And if they hadn’t, there’s nothing to
keep any of their users from doing so. Thus, TEX
users need not fret as to what will happen if the
company that supplies their composition software
fails to support a device they’d like to have. Even if
California should fall into the sea, TEX users know
that they’ll be able to use next year’s new technol-
ogy output peripherals (some non-Stanford TEX in-

93

stallations already are able to see their TEX output
on high-resolution terminal screens). Likewise, they
know that they’ll be able to use TEX on the next
generation of computer hardware, and that they’ll
be able to transfer their documents to any other
machine, be it IBM mainframe, DEC VAX or 20,
PRIME, Data General, Cray 1, etc. Even the new
breed of personal computer is able to run TEX. TEX
is portable between computers, operating systems,
and output devices.

TEX is being used by hundreds of “occasional
authors”. It will soon be in production use typeset-
ting more pages each year than STI. Already the
I2TEX package makes TEX close enough to Scribe
that it will capture many potential Scribe users
who can’t afford that system. This also represents
a much bigger market than STI can reach. The
TROFF typesetting language on Bell’s UNIX sys-
tem also represents a large number of typeset pages
annually (both “occasional author” and “production
typesetter”), and TEX will be making large inroads
in this market, too, because of its higher quality
output and increased flexibility. Even if TEX didn’t
exist today, the success of both TROFF and Scribe
contradicts Mr. Roesser’s skepticism about about
author-prepared documents.

Soon, virtually every department in every univer-
sity and corporation, and even many homes, will
have a computer that can quickly and effectively run
TEX. With the coming boom in computer network-
ing, nationally accessible data bases, and the grow-
ing capabilities of inexpensive computers with hi-res
graphic screens, TEX is in a unique position to be-
come a de-facto standard for document formatting.
Because of its capability, high performance, por-
tability, reliability, high quality, superb documenta-
tion, and low cost, I believe it will.

¥ *x k% x *x * *x % % % *

Remarks on the STI report
Michael Spivak

Here are some remarks on the STI report.

Much is made in the report of the dichotomy be-
tween author produced manuscripts and commer-
cially produced ones. It seems to me that this misses
an important point: it ignores the people who really
do all the work!

Mathematicians simply produce handwritten
manuscripts, and these manuscripts certainly aren’t
going to be sent off to a journall—whether that jour-
nal sets type by linotype or by computer. Instead,
the manuscript first has to be given to a technical

