
TUGboat, Volume 7 (1986), No. 3

Another Approach to Multiple Changefiles

Klaus Guntermann and Wolfgang Riilling*
Technische Hochschule Darmstadt

As reported by W. Appelt and K. Horn in TUGboat
Vol. 7, No. 1, pp. 2Ck21, there are several reasons
to allow multiple changefiles in the development of
a WEB program. These need not to be repeated
here. But we did not follow the same approach
when we faced the problem. We decided to develop
a separate program which we called TIE, since it
ties several parts of a WEB together.

Furthermore we allow that a changefile modifies
parts that were just changed. The general strategy
is that the addition of changefile f,+l behaves as if
the changefiles f1 to f , had been merged into the
WEB program before.

We use a separate program because of the
following reasons:

e This single simple program makes additional
changes to two programs (namely TAKGLE and
WEAVE) unnecessary.
A WEB software developer needs a tool to
incorporate frozen changes into a new release
of his WEB program from time to time. If the
preprocessor program can either create a single
changefile or merge all changes into a new WEB
file modifications can be written and tested via
an additional changefile without touching the
released source file. Finally the changes are
added ("tied") to the new release.

e TIE can be used for other WEB like systems, too,
e.g. for a C version of WEB we created recently.
Furthermore TIE allows the application of the
changefile method to "plain" Pascal (or even
FORTRAN, or whatever programming language
you like). One can just merge the changes into
the program by selection of the "create new
WEB file" option. This is possible since TIE
just knows about the line oriented structure of
changefiles and has not to deal with the WEB
control sequences for sections and so on in the
main WEB file. Even data files - as long as they
contain textual data-might be changed this
way.

The only dra~wback compared to the method
suggested by Appelt and Horn seems to be that it
introduces another preprocessing step. This takes

* now at Universitat des Saailandes, Saarbriicken

some time when the changefiles for large programs
like or METAFONT have to be tied since the
complete WEB source must be read once more.

Comments to our approach are welcome. TIE

is available as a WEB program and can be obtained
for a handling charge from Klaus Guntermann at
Technische Hochschule Darmstadt.

WEB Adapted to C

Klaus Guntermann and Joachim Schrod
Technische Hochschule Darmstadt

In the UNIX environment the programming lan-
guage C usually is best developed. For systems
programming it seems even to be more suitable
than Pascal. This led us to the development of
CWEB that allows literate programming in C, giv-
ing the full documentation tools that WEB adds to
Pascal.

The CWEB processors (simply named by a
C- prefix, as is the whole system-there was no
common relative whose initials the implementors
could choose) CTAXGLE and CWEAVE are derived
from their WEB counterparts.

Changing TANGLE to build a C program instead
of a program for the Pascal compiler was rather
straightforward. The only problems occurred with
the C preprocessor statements that must be allowed
in a CWEB program. These statements are supposed
to start on a new line, may span several lines ending
with a backslash. and in the last line (which may
be the first) no other text is allowed to follow.
With new tokens designating start and end of a
preprocessor statement it was rather easy to add
the necessary rules.

Adapting WEAVE to parse C was a heavier task.
One of the reasons is that the beginning of a C
function declaration cannot be detected very easily
since declaration and call of a function look similar
if one does not look ahead very far. The look ahead
is nearly impossible if CWEB sections are used for
the parameter declaration or the function body. We
introduced a new (i.e. in addition to WEB) control
sequence Qh that marks the start of a function
heading in a declaration.

The grammar had to be rewritten completely.
We tried to overcome some of the problems that
WEAVE has with Pascal formatting if there is not
a bunch of explicit formatting commands. The

TUGboat, Volume 7 (1986), No. 3 1.35

goal was to get satisfactory results even if explicit
formatting is seldom used. (So we are not happy
that we had to introduce the control sequence for
f~mction headings!)

The CWEBMAC file that specified the layout of
the formatted output was redesigned. One major
aim was to allow modification of the TFJ layout
parameters, e.g. tolerance, penalty and paragraph
formatting within the documentation parts of the
program. (Modification of the tolerance parameter
is essential if you try to comment a program in
German unless you accept a lot of over-/underfull
hbox messages.) In addition one can choose the
amount of indentation in the program part.

Following we give a CWEB version of the
probably well known UNIX wc command that counts
lines, words and characters in a (list of) file(s).

CWEB is currently written in WEB. A rewrite in
CWEB is planned but not yet started.

CWEB can be distributed for a handling charge
of DM 150.00 (US-$ 60.00) for educational/research
sites, DM 250.00 (US-$ 100.00) for others, on
magnetic tape (1600 or 6250 bpi, EBCDIC or
ASCII, please state format) or DOS 360 K byte
floppy disk.

1. CWEB-Example. This example presents the
"word count" program from UNIX. We rewrote it in
CWEB to demonstrate literate programming in C.

2. Most CWEB programs share a common struc-
ture. Differences are found merely when all func-
tions are just introduced when needed without any
special sequence.

(global #includes 3)
(global variables 4)
(all functions 17)

(main 6)

3. We must include the standard I/O definitions
to use formatted output to stdout and stderr.

(global #includes 3) =
#include (s tdi0.h)

This code is used in section 2.

4. As global variables we introduce some counters
that take the cumulated values for each file.

(global variables 4) =
long wordct , linect , charct ;

See also section 5.

This code is used in section 2.

5 . In case that we have to process a list of files
we must sum up the grand total in another set of
variables.

(global variables 4) +r
long twordct , tlinect , tcharct;

6. Xow we come to the general layout for the
main function.

(main 6) =
main (argc , argv)

int argc ;
cha r * * argv;

{
(local variables of main 16)
(set up option selection 7)

(go and process all the files 8)

(add the grand total line if there were multiple
files 15)

exit (status) ;

1
This code is used in section 2.

7. The first argument should be able to select the
counters the user needs. Each selection is given by
the initial character (lines, words or characters). We
do not process this option string now. It is sufficient
just to suppress unwanted figures at output time.
However, if no such option was given, print all three
values.

(set up opt im selection 7) =
wd = "lwc";
if (argc > 1 A *argv[l] = ' - ') {

wd = +k argv [1] ; argc - -; argv *;

1
This code is used in section 6.

8. Now we scan all the arguments and try to open
a file, if there is an entry left. The file is processed
and its statistics are written. We update the grand
total counts anyway.

(go and process all the files 8) =
i = 1;

d o {
(if a file is given we should try to open

it 9)

(initialize pointers and counters 10)

(scan this file 11)
(write this file's statistics 13)

close(f) ; (update grand totals 1 4)

1
while (+ti < argc);

This code is used in section 6.

136 TUGboat, Volume 7 (1986), No. 3

9. Now we should open the next file. A special
trick allows us to handle input from stdin-usually
file number 0-if no file name was given a t all. In
this case we use the preset value 0 for f to read
input from. If we could not open a file, we set the
return code for the program an try to proceed for
the other parameters.

(if a file is given we should try to open it 9) r

i f (argc > 1 A (f = open (argv [i], 0)) < 0) {
fprintf (stderr, "wc : ucanno tuope~Xs \n" ,

argv [i]); status = 2; c o n t i n u e ;

I
This code is used in section 8.

10. Since buffered 110 speeds up things very
much we use it, but we do the buffering ourselves.
This means that we have to set up pointers and
counters such that something is read into the buffer
on the first try.

(initialize pointers and counters 10) G

pl = p2 = b; linect = 0 ; wordct = 0 ;

charct = 0; token = 0;

This code is used in section 8.

11. Now we scan the file. The token variable
indicates if we are just within a word.

(scan this file 11) =
w h i l e (1) {

(fill buffer if it is empty 1 2)

c = *p1 +;

i f ('u' < c A c < '177) {
i f (l t o k e n) {

wordct i-i-; token+;

I
c o n t i n u e ;

1
i f (c = '\n') linecti-i-;

e l se i f (c f ',' A c f '\t ') c o n t i n u e ;

token = 0;

I
This code is used in section 8.

12. Using buffered I/O makes it very easy to
count the number of characters in the file, almost
for free.

d e f i n e B UFFERSIZE = 5 12

(fill buffer if it is empty 12) 3

i f (P I > p2) {
pl = b; c = r e a d (f , p l , BUFFERSIZE) ;
i f (c < 0) b r e a k ;

charct += c; p2 = pl + c;

1
This code is used in section 11.

13. Output of the statistics is done in a function.
This makes it easy to use it for the totals, too.
Additionally we must decide here if we know the
name of the file we have processed or if it was just
stdin.

(write this file's statistics 1 3) --
wcp (w d , charct , wordct , linect);

i f (argc > 1) {
printf (" , % ~ \ n ~ ~ , argv [i]);

I
else printf ("\nI1);

This code is used in section 8.

14. Grand totals are just cumulated.

(update grand totals 1 4) =
tlinect += linect; twordct += wordct;

tcharct += charct;

This code is used in section 8.

15. Before we stop we have to check if grand total
output is needed.

(add the grand total line if there were multiple
files 1 5) --

i f (argc > 2) {
wcp (w d , tcharct, twordct, tlinect);

printf (",total\n");

1
This code is used in section 6.

TUGboat, Volume 7 (1986)) No. 3

16. In this section we declare all the local variables
of main. This allows to check how many register
variables were actually used. The C compiler might
ignore some of them if there are too many.

(local variables of main 16) =
register char *pl , *p2;
register int c;
int i , token;
int status = 0;

char *wd;
char b[B UFFERSIZE] ;
int f = 0;

This code is used in section 6.

17. Printing the output lines. According to
the given options we print the values. If an invalid
option character was given, we do an emergency
stop. But the user is informed about legal parameter
settings.

We use a CWEB macro for output of the counts.
That makes it easy to show all values in identical
format. Of course, a C preprocessor macro would
have done the job, too. But that wouldn't have
shown the CWEB macro feature.

Because the function is rather short we do not
split it into subsections.

define prt-value (#) = printf ("%i'ldl', #);

break;

(all functions 17) =
void wcp (wd, charct , wordct , linect)

char *wd;
long charct , wordct , linect ;

register char *wdp = wd;
while (*wdp) {

switch (* w d p t t) {
case ' 1 ': prt-value (linect)
case 'w ': prt-value (wordct)
case ' c ' : prt-value (charct)
default: fprintf (stderr,

"usage :,-,wcu 1-clwl [nameu. . . I \ntt);
exit (2);

1
1

return ;

This code is used in section 2.

18. Index. The index is set up by CWEAVE.

argc: 6, 7, 8, 9, 13, 15.
argv: 6, 7, 9, 13.
b: 16.
BUFFERSIZE: 12, 16.
c: 6.
char: 6.
charct: 4, 10, 12, 13, 14, 12.
close: 8.
exit: 6, 17.
f : 16.
fprintf: 9, 17.
int: 6.
linect: 4, 10, 11, 13, 14, 12.
main: 6.
open: 9.
printf: 13, 15, 17.
prt-value: 17.
p1: 10, 11, 12, 16.
p2: 10, 12, 16.
read: 12.
status: 6 , 9, 16.
stderr: 3, 9, 17.
stdin: 9, 13.
stdio: 3.
8tdio.h: 3.
stdout: 3.
tcharct: 5, 14, 15.
tlinect: 5, 14, 15.
token: 10, 11, 16.
twordct: 5, 14, 15.
usage : wc . . . : 17.
wcp: 13, 15, 17.
wd: 7, 13, 15, 16, 17.
wdp: 17.
wordct: 4, 10, 11, 13, 14, 12.

(add the grand total line if there were multiple
files 15) Used in section 6.

(all functions 17) Used in section 2.

(fill buffer if it is empty 12) Used in section 11.
(global #includes 3) Used in section 2.

(global variables 4, 5) Used in section 2.

(go and process all the files 8) Used in section 6.
(if a file is given we should try to open it 9)

Used in section 8.
(initialize pointers and counters lo) Used in

section 8.
(local variables of main 16) Used in section 6.
(main 6) Used in section 2.

(scan this file 11) Used in section 8.
(set up option selection 7) Used in section 6.
(update grand totals 14) Used in section 8.
(v rite this file's statistics 13) Used in section 8.

