
TUGboat, Volume 9 (1988), No. 1 37

A Screen Previewer for VM/CMS

Don Hosek

A good previewer is a useful tool for working with

m, but unfortunately, there are very few available.

For users of TI-$ under the IBM VM/CMS system,
the only choice available used to be DVI82, a

Versatec driver that, as an added feature, allowed

previewing on IBM 3279 and 3179-G terminals.
To deal with this situation, I wrote DVIview, a

l&X previewer that displays its output on VT640-

compatible displays connected to an IBM mainframe

via either a 3705 controller or a Series-l/717l

protocol converter. In addition, the output routines
are modularized enough that it should be a fairly

simple task to modify the program to drive any

graphics terminal connected to the mainframe. (I
have plans to include support for GDDM-driven
displays in the near future.)

DVIview is a lengthy WEB program that inter-

prets the instructions in a DVI file and displays
them on the user's screen as determined by com-

mands typed at the keyboard. The entire page may
be viewed with block outlines of the characters, or

smaller portions of the page may be selected and
viewed using the actual shapes of the TI$ fonts.

Font information is read from PK files. (I cannot

recommend the PK format enough to people writing
new device drivers; the fonts take roughly half the

space of GF files and about a third the space of

PXL files. And PK readers are easier to write!)

The DVIview distribution includes two man-
uals: "Previewing TEX Output With DVIview"

is the users' guide and explains how to use the
program from a user's standpoint. Also included

is "Installing and Customizing DVIview" , intended
for the systems person who installs DVIview. In-

structions are given for installing DVIview as is, as

well as instructions on adding changes to the file
and a "Hitchhikers' Guide to WEB" (for those who

don't care how they get where they're going as long

as they don't have to ride the bus).
Due to the size of the program, it cannot be

distributed over the networks. To obtain a copy
of DVIview and its documentation, send $30 (to

defray duplication costs), a blank tape, and a return

mailer to:

Don Hosek

Platt Campus Center

Harvey Mudd College

Claremont, CA 91711

This article first appeared in m m a g , 1987#7.

The program is public domain, so feel free to give

it away. However, since it is still a young program,

I'd like to keep track of who has copies for purposes

of distributing updates.

Why Should

NOT Output Postscript -Yet

Shane Dunne

University of Western Ontario

In a recent TUGboat issue [I], Leslie Lamport sug-

gested that since PostScript is becoming accepted as

a standard page description language, perhaps
could be modified to output PostScript instead of

DVI code. This is a good idea, but it should not be
done yet for the following reason: At the moment,

the available PostScript literature does not state

precisely how drawn objects are to be rendered on
the output raster. As I will show in this article, such
a specification of Postscript's semantics is urgently

needed to allow precision application programs such

as TEX to properly use the language. I have written
to Postscript's developers, Adobe Systems Inc. of

Palo Alto, California, to draw their attention to this

problem, and suggested that it be resolved publicly

using TUGboat as a forum for discussion.
For readers unfamiliar with the Postscript lan-

guage, a few words of explanation are in order.

PostScript is a language designed specifically for
specifying the output of raster printing devices.

The language is interpreted, with the interpreter
usually resident in the printer itself. It was in-

tended to be human-readable, and hence uses only
printable ASCII characters, but to simplify parsing
it uses a rather cryptic postfix syntax. This is

justified on the grounds that most PostScript pro-
grams will be written automatically as the output

of other applications. PostScript incorporates a

sophisticated device-independent drawing model in

which a single transformation matrix (called the

current transformation matrix or CTM) specifies

the correspondence between the user and device

coordinate systems. User coordinates are floating-

point numbers with essentially infinite resolution;
device coordinates are normally integers.

The incompleteness of the current PostScript

semantic definition is apparent from the following
example. Assume that the CTM of a PostScript de-

vice is set so that one unit in user space corresponds

