
A Text Processing Language Should be First a Programming Language

Luigi Semenzato, Edward Wang
Computer Science Division: University of California, Berkeley, California, 94720
Internet: luigiQginger.Berkeley.EDU, edwardQucbarpa.Berkeley.EDU

Abstract

Historically, typesetting languages have been designed for the en-

try of text. An embedded command language has since become

important, indeed essential, but has remained a second-class cit-
izen, sometimes masquerading as text, invariably clumsy and in-

adequate. We have designed a language that is a full-function

programming language with embedded text. This shift in em-

phasis results in a level of consistency, flexibility, and power not

otherwise possible.

Introduction

A batch-style computer typesetting system accepts

text files as input, to produce formatted documents
as output. Most such systems are extensible. They

allow definitions of new document styles and com-

mands. Some, like m, also allow the input syntax

to be changed. To do all this, the format of the

input must be a complex language. The design of
this language affects the robustness, ease of use, and

overall quality of the whole system.

A document, therefore, is a mix of text and
commands, some of which define new commands or

make syntax changes. Existing systems have em-
phasized the text portion of the input. In these lan-

guages, the commands are an afterthought. They

often follow the inconvenient lexical conventions of

the surrounding text, and make awkward program-
ming languages. This paper describes our attempt

to reach a better design, by turning the traditional

language inside out, giving priority to commands

and programming. We call this system and its lan-
guage Aleph.

An Aleph document is a sequence of commands,

some with embedded text as arguments. The com-

mands are in a programming language with a fixed

syntax. Text, on the other hand, can have a user-

specified syntax. Each command builds an internal

representation of a portion of the document. This

representation is then processed to produce the out-
put.

Aleph is an evolving design. Its current realiza-

tion (sometimes called Alepho) is written in Lisp.

Our immediate goal is not to produce a complete

typesetting system, but to design a language that
is a tool for both writing the system and using it.

One consequence is that the Aleph system does no

actual typesetting, but generates m as output.

The sections of this paper describe selected as-

pects of Aleph, in this order: basic constructs, ex-

tensible syntax, internal representation, implemen-

tation. The rest of this introduction is a discussion

of some of the issues in typesetting-language design.

Syntax separation. Commands should not obey

the syntax of the text around it.' For example, it
is often convenient to ignore whitespace and line

boundaries in a program, but not always possible

in the text of a document. In m, it is sometimes
hard to predict whether spaces and newlines in and

around commands will be part of the output. User-

defined syntax is a useful feature, but exacerbates
the problem - commands that change the syntax

may affect themselves.

In Aleph, commands (both definitions and in-
vocations) are in a language with a fixed syntax,

while embedded text follows a different set of rules.

Syntax changes for text are well supported.

Programming. Extensibility is a very desirable

feature in a batch typesetting system. It should

be supported with a full-function programming lan-

guage.
Extensibility is essential if new document styles

are to be written, and in practice, all but the most

casual users define shorthands for frequently used

text and command sequences. For the latter, a
macro language is the natural choice - after all,

We use the words lexical and syntactic in-

terchangeably, partly because text-processing lan-

guages have little of what can be called syntax, but
mostly because lexis, a candidate counterpart for

syntax, is not a common computer-science term.

434 TUGboat, Volume 1 2 (1991), No. 3-Proceedings of the 1991 Annual Meeting

nothing is easier to understand than textual sub-

stitution. Indeed, existing systems have preferred

macro languages over more procedural ones. On
the other hand. a document style is a large pro-

gram. U ' , for example, is 2000 lines of code.

Real programs need real programming-language fea-

tures. TEX, for one, has conditionals and loops, but

no real data structures or indeed any support for

writing large programs. In addition, macros them-

selves become unwieldy in large programs. That

allows fine control over macro expansion is an

indication of its complexity.2

Intertwined with issues of linguistic power is
the fact that typesetting systems are always im-

plemented in one language (a general-purpose pro-

gramming language) while they implement another.

(Most complete systems, of course, are written in
both.) This practice limits the power of user-written

programs - when a primitive to do something does

not exist, it cannot be done. The existence in of

complex functions as primitives (such as \ha l ign)

may be an instance of this.

Aleph is a full-function programming language,

with data types to represent textual objects and

functions to manipulate them. Users at all levels

use the same language. There is no barrier between

what the user can do and what the system can do.

Aleph and Lisp

Aleph is embedded in Common Lisp. In other
words, Aleph is implemented in Lisp as a set of

functions, data types, and syntax extensions. An
Aleph programmer must use at least as much Lisp

as Aleph.

Lisp is an expression language. Every program

construct is a value-producing expression called a

form. A function-call form is surrounded by paren-

theses: (f 1 2 3). Here, f is the name of the called

function. It is passed three arguments: 1, 2, and 3.

Identifiers like f are called symbols. In this paper,

a symbol can be any sequence of letters and -s. A

symbol in the first position of a function-call form
is a function name. A form that is a symbol alone

is a variable. The form (f x y z) calls f with the

Macros are not inherently less powerful. Af-

ter all, we know that lambda calculus is turing-

complete. W ' s own linguistic problems are also

quite complex. They are in part due to the need

to delay execution in some situations. In any case,

complexity is perhaps not a deadly sin. but the ap-

parent unpredictability that comes with complexity
is.

A Text Processing Language Should be First a Programming Language

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

values of variables x, y, and z. Forms can be nested:

(f 1 (g (h 2) 3) 4).

Common Lisp also has characters and strings.

A string is enclosed in double-quotes: "in double

quotes" . A character is written with the the prefix

#\. For example. #\a is a, #\% is %, and #\ \ is \.
A symbol that begins with a colon, : , is a key-

word. A keyword is an uninterpreted identifier that

stands for itself. It is used like the identifiers defined

by an enumerated type in C or P a ~ c a l . ~

Not all forms in parentheses are function calls.
There are built-in and user-defined forms that have

special syntax (nevertheless made out of symbols

and parentheses), and interpret arguments in spe-
cial ways. The most visible ones in Aleph are those

that begin with def .

We now know enough Lisp to understand the

Aleph extensions.
A document (or a part of a document) in Aleph

is represented by a tree, like nested boxes and

lists. For example, the TEX box of boxes made by

would have a fairly similar Aleph tree:

t e x t " a bl ' t e x t " c dl1

Trees are constructed using tree-building func-

tions-Lisp functions that create tree nodes. The

last example is constructed by the form

(vbox (hbox (t e x t " a b "))

(hbox (t e x t I1c d l ')))

An Aleph document is just a sequence of such

tree-building forms. However, entering a large doc-

ument with nested forms is rather clumsy. For most

forms, there is an equivalent Aleph string that is

more concise.
An Aleph string (or just string, when con-

fusion with Lisp string is unlikely) is enclosed in

brackets: [and 1. For example, [some t e x t 1 is

equivalent to (t e x t "some t e x t ") . As in W,
newlines and tabs in Aleph strings are treated

like spaces, and consecutive spaces are treated like

If this is confusing, then just treat keywords

as strings- think "xyzzy" when you see : xyzzy.

Keywords have no meaning except in their name
and in their use.

Luigi Semenzato, Edward Wang

one. [someu,text] is not the same as (t ex t

l'some,utext 'I).

The equivalence between a string and its corre-

sponding form is strict. The string actually becomes

the form as it is read by Lisp. The rest of the Lisp

system never sees Aleph strings.

Since they are equivalent, strings and forms can
be mixed freely. We now know enough to enter a

simple document:

(par [A very shor t document of
a s ing l e shor t paragraph

of a middling sentence.])

Just as we can go from Lisp to string, we can

go from string to Lisp. The string

[an @ (i t [i t a l i c i zed]) word1

has a string nested in a Lisp form that is in a string.
It is equivalent to

(group (t ex t "an "1

(i t [i t a l i c i zed])

(t ex t " word"))

which is in turn equivalent to

(group (t ex t "an 'I)

(it (t ex t " i t a l i c i z e d "))

(t ex t " word")

Since this string-Lisp-string double take is so com-

mon. we have defined a shorthand for it:

[an @it [i t a l i c i zed] s t r i ng] .

The escape character, @, is very much like \ in

w. A number of @-triggered featured are defined
in Aleph, and the user can define more. This and

other forms of user control over strings are the sub-

ject of the next section.

Mode and Syntax

A mode governs the way Aleph strings are turned

into tree-building forms. In TEX, the equivalent con-

cept is implicitly defined by the catcodes. Aleph, on

the other hand, supports a data type, mode, that en-

capsulates all the information that defines a mode.
For example, to define a mode in which the

character % expands to the italicized word "Aleph,"

we would write

(def syntax aleph

(# \% (i t [Aleph]) 1)
(def mode aleph aleph)

The first statement creates a new syntax table,

aleph, with the character definition. The second

statement creates the the new mode, also named

aleph, tha t uses the new syntax (named by the sec-

ond a l eph on the line). (We often, but not always,
use the same name for a mode and its syntax.) The

new mode can now be invoked using an escape se-

quence:

[. . .@$aleph[% is embedded i n Lisp]. . . I .
We can also give aleph a pair of delimiters:

(defmode aleph aleph

:open #\I
:c lose #\I) ,

and use them to invoke the mode more concisely:

[. . . (% i s embedded i n Lisp). . . I .

This is one of the reasons for separating defmode and

defsyntax. A syntax is the character definitions

used by a mode. The mode itself uses a syntax, but
may also have some supporting attributes.

A syntax can be built on top of an existing syn-
tax (assuming we already have a verbatim syntax

defined) :

(defsyntax valeph (verbatim)

(#\% (i t [Aleph] 1)
(defmode valeph valeph)

Thus, valeph has the behavior of verbatim but also

recognizes %.
A syntax can be a combination of others. We

could have (and indeed should have) defined valeph

like this:

(def syntax valeph (aleph verbatim))

The syntaxes in Aleph form an inheritance hier-

archy. Each syntax definition specifies a list of par-

ent syntaxes (multiple inheritance) and some local
additions. Looking up the definition of a character

in a syntax is a matter of trying, in order and until
a definition is found, the local definitions and then

the parents (left to right). In each parent, the same

process is repeated.
When modes nest (such as in [. . . C.. . I . . . I) ,

the lookup is first done in the closest enclosing

mode, then repeated in surrounding modes (inside

out), until a definition is found. Inside C.. . i%
is embedded i n Lisp). . . 1 , the definition for % is

found in mode aleph, but the other characters be-

have as they would outside the braces. This nesting

is lexical, even when a string goes in and out of Lisp:

[. . . (@ (i t [%. . . I)) . . . I .

The full form of def syntax looks like this:

(def syntax (name) ((parent). . . 1

(default-definition)

((chars) (definition) 1

. . . I

(Chars) is either a single character or a Lisp string

representing a set of characters. (Definition) is the

definition given to the character or characters. Any

number of ((chars) (definition)) pairs can be spec-
ified. Characters not explicitly mentioned receive

436 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

A Text Processing Language Should be First a Programming Language

(default-definstzon), which can be left out, to leave

them undefined. So far. we know a character def-

inition can be a Lisp form. It can also be one of

several keywords, some of which we will see later.

In the most extreme case, a definition can be a Lisp

function. We won't use any of these in this paper.
A syntax or mode can be changed: character

definitions and parents can be added and deleted;

modes can lose or gain delimiters.

The basic Aleph defines these modes:

(def syntax de l imi te r (1)
(def syntax escape

(# \@ :escape))

(def syntax s tandard
(#\Newline :space)

(#\Space :space)

(#\Tab : space)
. . . more definztzons . . .)

(defsyntax defau l t

(de l imi te r escape s tandard))
(def syntax group 0)
(defmode group group

:open #\ [

: c lose # \ I)

Default is the outer-most syntax of all Aleph

strings. Escape contains the single character @.

Delimiter contains the delimiters defined with

defmode. Standard is the rest of the definitions for

the de fau l t mode. Group defines no characters. It

is the syntax for the delimiters [and 1 . Delimiter

is initially empty, but (defmode group . . .) soon
adds two definitions to it.

Escape, del imiter . and s tandard are separate

syntaxes to allow modes to inherit them indepen-
dently. For example, one may wish to define a mode

that behaves like the I 4 W verbatim mode but also

recognizes the escape character:

(defsyntax weak-verbatim

(escape verbatim))

This approach allows a change to the escape char-

acter to be effective everywhere.
The escape character behaves like a mode, but

without a fixed closing delimiter. The dispatch

syntax controls escape-sequence processing. These

escape sequences are supported:

@(. . . I
This is the escape into Lisp we have seen. The

Lisp form should be a tree-building form.

@(symbol)

This is equivalent to @((symbol)). (Symbol)

must b e a reasonable-looking Lisp symbol

(made out of letters and -s).

@(symbol) (delimited-string). . .
If the @(symbol) sequence is followed immedi-

ately by an opening delimiter (defined in syntax
de l imi te r) , then the delimited string becomes

the argument of (symbol):

@((symbol) (delimited-string))

(Delimited-string) can be repeated any number

of times. For example, @f [Aleph] [Beth] is the

same as @ (f [Aleph] [Beth] 1.

@$(symbol) (open-delim) (text) (close-delim)

Enter mode (symbol) for the duration of (text).
(Text) can contain any character other than

(close-delim). (Open-delim) is any character.
(Close-delim) is) , 1, 1: or >, if (open-delim)

is (, [, 1, or <, respectively. Otherwise,

(close-delim) equals (open-delim). This is how
modes without delimiters are invoked.

The rest of the line, including the end-of-line

character, is ignored.

@(accent)
A number of accents are defined in Aleph.

@\(char)
The character (char).

@(char)
This is equivalent to @\(char), if (char) has no
defined behavior (one of the above).

Flexibility: mechanism and policy. The user

of a mode is not necessarily the writer of the mode.

This is particularly true when canned Aleph code
from a library is used. I 4 W , for example, has such

a library. When a mode or a syntax is to be reused,

the programmer must anticipate the possible uses

and choose the implementation accordingly. To do

this requires some skill, but also a flexible syntax
mechanism.

For example. the mode aleph, though frivolous,

belongs to a common class of user-defined modes.

It defines only a few characters, so must be used
in conjunction with another mode (if nothing else,

with defau l t) . We expect such a mode to be used

in several different ways, depending on the user's

needs:

Enter mode when necessary, using delimiters or

@$.

a Use everywhere, by making it a parent of

de f au l t . An Aleph function is provided to do

this.

e Combine with other modes to make new ones

(like valeph).

As we have seen. the definition of aleph does allow

this freedom.

TUGboat, Volume 12 (1991). No. 3 -Proceedings of the 1991 Annual Meeting

Luigi Semenzato, Edward Wang

Consistency. A mode like W W ' s verb is very
easy to define in Aleph:

(defsyntax verb 0 :char

; ; make newline act like a space too

(#\Newline (t e x t I t I t)))

(defmode verb verb)

All characters are given the definition : char (mean-

ing just the character itself). Using verb looks like

its I P w counterpart: @$verb 1 . . . I .
It is simple to define verb in Aleph- we do not

have to write catcode-changing macros. Its other
advantage is the consistency of behavior. Wherever
@ is recognized, @$verb I . . . I can be used. Unlike in

I P w , there are no unpleasant surprises depending

on context or content.

Trees

As mentioned, an Aleph program constructs a tree

that represents the document internally. Nodes in
the tree have a type that indicates what object each

node stands for. The type is named by a Lisp key-

word. For instance, a node of type : box represents a
box, and its children the content of the box: a node

of type : p a r represents a paragraph, and its chil-

dren text or other material that needs to undergo

line breaking. We have given examples of how to

construct such trees in earlier sections.
A tree fully specifies a document fragment, but

requires some processing before it can be used for

output. Aleph performs such processing in a traver-

sal pass.
Aleph provides a number of primitive node

types. One can also define new types in the fol-
lowing way:

(defnode (type)

: c o n s t r u c t o r (c-function)

: t r a v e r s e - f unct ion (t-function)

: output-f unct ion (0-function))

Here (type) is an arbitrary keyword denoting the

node type. (C-function) is a function that con-

structs a node of that type. If one is not sup-
plied, a standard constructor is provided, with a

name equal to the node type (without the colon).

(T-function) is the traversal function for nodes of

this type. (0-function) is called during a similar

traversal t o output the document.
Each instance of a node has an associated set of

named values called attributes. Attribute names are

also Lisp keywords. For instance, a :box node has

a : d i r e c t i o n attribute indicating if its components

should be stacked horizontally or vertically; a :pa r

node has a :width attribute, whose numeric value

selects the width to be used for line breaking.

A few attributes are assigned at node construc-

tion time. Other attributes represent printing in-

formation. such as the final position and size of the

formatted object. These attributes are filled in by

the tree traversal. This starts at the root of the

tree and proceeds by calling the traversal function

of each node it visits. Besides computing attributes,
traversal functions are also allowed to modify the

tree locally.

To clarify these concepts, we introduce a sim-

ple example. We add the node type : f -box. This

node has a single child representing some printable

object. If the width of the object is less than 1 inch,
it is printed centered in a 1-inch horizontal space;

otherwise three dollar signs are printed.4

(defnode :f-box

: t raverse - func t ion # ' t rav-f-box)

The traversal function for : f -box is t r av- f -box;

its output function is the default output function,
which just outputs the node's children.

(def un t rav- f -box (n)

; ; First visit the (only) child

; ; of this node.

(t r a v e r s e (c h i l d n))

; ; Then destructively modify this node.

; ; Change its type:

(s e t f (type n) :box)

; ; Specify the width:

(s e t f (a t t r :width n) ! l i n c h)

; ; Change its child:

(s e t f

(c h i l d n)

; ; Use a centering construct
(c e n t e r

(i f (< (a t t r :width (c h i l d n))

! l inch)

; ; and inside it, put

; ; either the old child
(c h i l d n)

; ; or three dollar signs.

[$$$I 1 1)
; ; Traverse the modified node
; ; to set the glue.

(t r a v e r s e (c h i l d n)))

This example contains a few unfamiliar but quite

simple Lisp and Aleph constructs:

the defun form defines a Lisp function named

t r av- f -box, that takes the single argument n

and operates on it;

The letter f in f -box stands for FORTRAN.

438 TUGboat, Volume 12 (1991), NO. 3 P r o c e e d i n g s of the 1991 Annual Meeting

A Text Processing Language Should be First a Programming Language

the Aleph form (c h i l d x) refers to the value of

the single child of x. and the form (a t t r name

x) refers to the attribute name of node x;

se t f is the Lisp assignment operator. (se t f

place value) replaces the old value of place with
value. So (s e t f (c h i l d n) . . .) replaces the

child of n;

! (number)(unit) is Aleph's way of specifying a

length;

c e n t e r is an Aleph function that returns a

group with appropriate glue for centering.

This example reveals that our typesetting prim-

itives are very similar to those of w. In fact, we
think that most of m ' s primitives are well designed

and we are not attempting to improve on them.
One should define new node types with their

own traversal functions only when direct access to

the typesetting engine is needed. We expect style

writers to be able to do most of their programming
at the level of mode definition and tree construction.

The system programmer (us) should provide enough

node types to satisfy the most common needs.

Current Status and Future Directions

As we are submitting this paper, the implementation

of Aleph contains the described syntax mechanisms

and intermediate representation. We have also de-
fined a small number of node types, most notably

paragraphs, boxes, and glue. The output routines

produce plain m. is also used in interactive

mode to perform some computations currently not

implemented in Aleph, such as finding the widths of

objects in our table constructor. The Aleph process

communicates with the Tp$ process through Lisp
streams connected to a UNIX socket pair.

Aleph relies on for ligatures. line breaking,

math, and output. As a consequence, we expect

the exact semantics of traversal and retraversal to

evolve, as more is demanded of them. Also, it is at

present difficult to estimate the system's efficiency,
though we believe the tree-and-traversal model is

not fundamentally inefficient.

Of the missing features, ligature and math are

perhaps the hardest for our model. We plan to

tackle them first. Unrelated to m, we are also
considering ways to extend the syntax mechanism

to recognize multicharacter sequences.
Aside from completing this implementation and

refining it into a practical tool. our work suggests

many other research directions. For instance. to

what extent is Aleph's intermediate representation

suitable for a WYSIWYG-style document editing.

with incremental processing? And if it is. would it

simplify the task of integrating programmatic and
WYSIWYG interfaces? mre have not tried to answer

these questions, but we hope that our work, by al-

lowing one to look at an old problem in a new way,
will provide both a stimulus and a vehicle for further

research.

Acknowledgments

We thank Ethan Munson for his useful suggestions.

Luigi Semenzato did part of this work at the Dipar-

timento di Informatica, Universith di Padova, Italy.

Bibliography

Steele, Guy L. Common Lisp: the Language.

Burlington, Mass.: Digital Press, 1984.

Kernighan, Brian W. L'Issues and Tradeoffs in Doc-

ument Preparation Systems." Pages 1-16 in

Proceedings of the International Conference
on Electronic Publishing, Document Manipula-

tion & Typography, R. Furuta, ed. Cambridge:
Cambridge University Press, 1990.

TUGboat, Volume 12 (1991), KO. 3-Proceedings of the 1991 Annual Meeting

Luigi Semenzato, Edward Wang

Appendix

Table example

This is an example of use of our table primitive, with the resulting output. The table constructor is a Lisp

macro. Macros are a powerful feature of Lisp that we cannot attempt to explain here. In this context, just
think of a macro as a function with a more flexible argument-passing mechanism.

; ; ; W e thank Marcia Feitel for correcting a n important omiss ion.

(line

(center (bf (bind :size 12 [From page 236 of the TeXbook, more or less]))))

(vskip ! 0.5in)

(line

(center

(table

; ; Half o f the padding goes before the column, half a f ter the column.

:pad !0.5cm

; ; T h e vertical padding goes between rows.
:vpad !2pt

; ; T h e template is a list of column descriptors.
; ; Each descriptor i s a funct ion, o r a list of functions,

; ; called in t u r n wi th each corresponding en t ry i n a row
; ; as argument.

:template ((right bf) (center it) center center left)

:rows

; ; These are the rows. E a c h row is a list of entries.

(((sl [American]) (sl [French]) (sl [Age]) (sl [Weight]) (sl [Cooking]))

((sl [Chicken]) (sl [Connection]) (sl [(months)]) (sl [lbs .])

(sl [Methods])

; ; A special row that spans all columns.

(: span-all (left (vbox [I ! 0. lin)))

; ; $ i s the Aleph delimiter for the tex-math mode, a n escape i n t o W ' s m a t h mode.
([Egg] [Oeuf] [$-2\over3$] [$l\over6$1 [Boil, Fry, Poach, Raw1

([Squab] [~oussin] [2] [$3\over4$ to 11 [Broil, Grill, Roastl)

([Broiler] [Poulet Nouveau] [2 to 31 [l$l\over2$ to 2$l\over2$]

[Broil, Grill, Roastl)

([Fryer] [Poulet Reine] [3 to 51 [2 to 31 [Fry, SautQJe, Roast])

([Roaster] [Poularde] [5$l\over2$ to 91 [Over 31 [Roast, Poach, Fricassee])

([Fowl] [Poule de lJAnnQ'ee] [I0 to 121 [Over 31 [Stew, Fricassee])

([Rooster] [~oq] [Over 121 [Over 31 [Soup stock, Forcemeat])

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

American

Chicken

Egg

Squab

Broiler

Fryer

Roaster

Fow 1

Rooster

A Text Processing Language Should be First a Programming Language

From page 236 of the TeXbook, more or less

E'rench

Connection

Oeuf

Poussin

Poulet Nouveau

Poulet Reine

Poularde

Poule de Z'Anne'e

Coq

Age

(months)

2 --
3

2

2 to 3

3 to 5

5 ; to 9

10 to 12

Over 12

Weight

Ibs.

1

to 1

1; to 2;

2 to 3

Over 3

Over 3

Over 3

Cooking

Methods

Boil, Fry, Poach, Raw

Broil, Grill, Roast

Broil, Grill, Roast

Fry, Sautk, Roast

Roast, Poach, Fricassee

Stew, Fricassee

Soup stock, Forcemeat

TUGboat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

