
TUGboat, Volume 13 (1992), No. 4

Diag: A Drawing Preprocessor for W7i&X

Benjamin R. Seyfarth

Abstract

Diag is a preprocessor for drawing diagrams for

I4m documents. The user prepares a text file

containing commands in the diag language which

are processed by diag producing f i g commands

which are then processed by t ransf i g producing

commands in a variety of formats acceptable to

I4m. The diag preprocessor interprets a lan-
guage with graphics commands using infix expres-

sions with user-defined variables. In addition it pro-

vides a macro facility for simplifying repetitive op-

erations. The combination of diag and t ransf i g
provides a simple, portable method for producing
diagrams within I4".

1 Introduction

The T@ typesetting system by Donald Knuth [3]
provides a method for producing high-quality type-

setting on a wide variety of computer systems. TEX
has been augmented by Leslie Lamport's IPT@ [5]

to provide an easier interface for TEX users. T@
was designed for typesetting text and mathematical

formulas and does a splendid job for both. How-

ever, QjX provides nearly no support for graphics.

I4m provides a variety of macro packages which do

allow the user to incorporate drawings in a IPm
document, but none of these is particularly easy

to use. Diag provides a convenient alternative for

I4m drawings.
LNQX incorporates a simple picture drawing

environment which can be used to produce lines,

boxes, circles and arrows. Unfortunately, this pack-

age is designed around a set of line drawing char-
acters which can only be used to draw lines with

a Limited number of preset slopes. In addition the

package is written as T&X macros which means that

specifications of x and y values can become oner-

ous if the user must use macros to compute

locations. Lamport suggests that BTJ$ drawings
be completely designed using an initial drawing on

a piece of graph paper. This is feasible, but it does

not provide easily-modifiable diagrams.

There are several macro packages which have
been written for I4m to provide better graphics.

EPIC [7] is a n extension of the I P W picture environ-

ment which uses the LATEX drawing commands as

primitives t o produces lines, grids and arcs. EEPIC

[4] is an extension of EPIC which uses t p i c specials

to overcome the limitations inherent in the IPm
picture drawing primitives. The QCI'EX [8] pack-

age overcomes most of the limitations of the other

macro packages and can produce high-quality graph-

ics. Unfortunately it and the other macro packages

suffer from the inconvenience of doing arithmetic us-

ing T@ macros.
In contrast to these IPm macro packages is the

PIC preprocessor [2] for the t r o f f typesetting sys-

tem [6]. PIC provides a separate language support-

ing variables, infix expressions, looping and macros.

This language allows a user to describe a diagram

very simply using variables to define the x and y

coordinates for graphics objects. This makes it easy

to position objects relative to other objects which

makes diagrams easier to modify.
There is a version of the PIC preprocessor

called t p i c , which has been altered to output TEX
\ spec ia l commands. These specials are then in-

terpreted by DVI drivers to do the actual drawing.

Unfortunately t p i c is a modification of PIC and can
only be distributed to licensed PIC users.

A completely different alternative for producing

drawings in I4m is to use an interactive drawing

program such as f i g or xf ig . f i g is a graphics edi-
tor originally writ ten by Supoj Sut ant havibul at t he

University of Texas. xf i g is a version of f i g writ-

ten for the X Windowing System by Brian Smith

of the Lawrence Berkeley Laboratory and others.
Both these programs output f i g commands which

can be translated using t ransf i g into EPIC, EEPIC,

PfZQX, t p i c and several other formats usable in

This is a convenient proposition for people
with graphics terminals, but graphics terminals are

not always available. Another drawback to using in-
teractive drawing programs is that they do not gen-
erally support a convenient language interface. A

language interface would allow users to write special

programs to output graphic commands when there

are many drawings to create.

The diag preprocessor provides a language sim-

ilar to the PIC language, although it is considerably
simplified. It does support variables, in& expres-

sions, relative positioning and macros similarly to

PIC. It does not presently support loops or i f state-

ments, nor does it support as many relative posi-

tioning options as PIC. It was decided that loops

and conditional statements would be most useful
for graphing mathematical functions and the au-

thor suggests using the GNUPLOT program for plot-

ting functions. The relative positioning options in

diag are fewer than those in PIC, but s a c i e n t for

most uses. The diag language is designed to be easy

to learn and is capable of producing high-quality

graphics for IP'QX documents.

TUGboat, Volume 13 (1992), No. 4 479

diag tion can be used as a default for most commands

start finish and it can be explicitly altered. The variables x and

y refer to the current position and are available to

the user.

Figure 1: Getting There

2 Using diag

The input to d iag is a text file containing d iag com-
mands. Let's suppose that we have a text file named

"exl.dn which contains the following:

S t a r t : c i r c l e " s t a r t " a t (I , I) ;

Finish : c i r c l e " f in i sh" a t (3,1) ;
arrow "diag" S t a r t . e t o finish.^;

This file contains three d iag commands. The

first two draw circles and the third command draws

an arrow from the start circle to the finish circle,

placing the word "diag" above the arrow. The words

before the colons of the first two commands are the

names of the objects. The arrow is drawn from the

easternmost point of the start circle to the western-
most point of the finish circle. We could modify

.the location of either circle and still connect the two

circles using the same arrow command.

To convert the diag commands into

commands, we use the following command

d iag < ex1.d I fig2dev -L pic tex > ex1.tex

This will produce a file, "exl.texn containing com-

mands which can be input into using

\begin(figure)

\begin(center>
\input{exl)

\end(center)

\caption(Getting There)
\end(f igure)

The resulting diagram is shown in Figure 1.

3 The Diag Coordinate System

The default coordinate system for d iag uses mea-

surements in inches. The origin of the coordinate

system, (O , O) , is defined to be the lower left corner

of the diagram. From there increasing x values refer

to points t o the right and increasing y values refer
to points u p the page from the origin.

The default scaling can be altered by assigning
a new value to the s ca l e variable which is initially 1.

Making s c a l e larger will shrink your diagram, while

making it larger will expand your diagram. It is
possible to change scale in the middle of a diagram,

but this is likely to cause confusion.

As graphics commands are executed, diag

maintains a current drawing position. This posi-

4 The Diag Language

Parsing in diag is performed by an interpreter gen-
erated using the yacc parser generator. The in-

terpreter consists of a lexical analyzer feeding the

LALR(1) parser from yacc. The two work together

to translate commands in the diag language into

equivalent f i g commands.

4.1 Diag Lexical Conventions

The lexical analyzer expands macros. ignores com-

ments and groups input characters into lexical items.

The macro expansion facility will be defined later.
The d iag lexical items are identifiers, numbers,

strzngs and the following special characters:
+ - / * () > . : ? a n d =

An identifier is a letter followed by any number

of letters or digits. Upper and lower case letters are
permitted and denote different identifiers. Several

unexpected identifiers are keywords in diag and will

most likely cause syntax errors if they are used as
variable names. These include:

e n s w ne nw s w s e

A number in d iag must start with a digit and

may have any number of digits afterwards with at

most one decimal point. Any fraction less than 1.0

must have a leading zero as in "0.5". A number can

be preceded by a minus sign.
A string is defined as in the C programming

language to be anything between a pair of quote

symbols as in "s t r ing" . It is not possible to place
a quote symbol in a diag string.

The special characters are used to form arith-

metic expressions and for a handful of special pur-
poses detailed below.

Comments in diag are identified by either a #

or % and extend from that character to the end of

the line. This allows comments to either stand alone

or to be placed on the end of a command.
An identifier in diag is either a keyword or a

variable name. A variable becomes defined either by

an assignment statement or by a graphics command

preceded by an identifier naming a graphics object.

In either case the variable name is the first element
of the command. Most commands start with one

of the command keywords defined below and every

diag command is terminated with a semicolon.

480 TUGboat, Volume 13 (1992), No. 4

4.2 Diag Statements

A diagram is defined to be one or more statements
in the diag language. Using Backus-Naur Form
(BNF), we have:

diagram + diagram statement ;

-+ statement ;

There are several types of statements in diag:

statement -+ assignment
+ drawbox

+ drawcircle

+ drawellipse

+ drawline

+ drawarrow
-+ drawtext

-+ drawarc

+ drawcurve

-+ gotostatement

4.2.1 Assignment Statement

An assignment statement is defined to be a variable
name followed by an equals sign and an arithmetic
expression. The variable will be created if it does not
already exist. The BNF for assignment statements
and expressions is

assignment + IDENTIFIER = expr

expr --+ IDENTIFIER

+ NUMBER

+ expr + expr

+ expr*expr
+ expr - expr

+ e x p r / e x p r

+ - expr

+ (e x p r)
+ IDENTIFIER . xory
+ IDENTIFIER . pos . xory

xory x 1 y

Precedence for arithmetic expressions follows
the normal pattern with multiplication and division
having higher precedence than addition and subtrac-
tion. Parenthetical expressions are evaluated first.

Boxes, circles and ellipses may be named within
diag. This is done by preceding the command to
draw an object by a variable name and a colon. Af-
terwards the object's name can be used to specify a
position. The x and y coordinates of an object can
be used in a n expression by adding either ".x" or
" . y" after the variable name.

There are eight compass point positions defined
for every named object. These can be used to specify
positions in a diagram. This can be quite convenient
compared t o computing a position like the northeast
point of an ellipse.

Figure 2: Ellipses and arrow

Object names and corner points are special
cases of point expressions in diag. A point expres-
sion can also be specified as two arithmetic expres-
sions in parentheses. Here is the syntax for point
expressions:

ptexpr + (expr , expr)
+ ptexpr + ptexpr
+ ptexpr - ptexpr

-+ IDENTIFIER

-+ IDENTIFIER . pos

-+ IDENTIFIER . ?
pos -+ n l s l e l w1 ne1 n w I s e I sw

The following code draws two ellipses and con-
nects them with an arrow:

X I = I ;

x2 = X I + 2 ;

e l : e l l i p s e "1" a t (x 1 , l) ;

e2: e l l i p s e "2" a t (x2,eI .y+1);

arrow from e l . n e t o e2.w;

The diagram is in Figure 2. The second ellipse
is placed two inches to the right and one inch higher
than the first ellipse. The arrow is drawn from the
northeast point of the first ellipse to the west com-
pass point of the second ellipse.

Sometimes the eight compass points are not ex-
actly the right points. Suppose we wish to draw an
ellipse with four circles beneath and draw arrows to
each circle. This is indicated with an object name
followed by " . ?" to indicate that diag should calcu-
late a boundary point of the object for the connect
line or arrow. This is shown in Figure 3. Here is the
code required:

sca l e = 1 . 5 ;

e l : e l l i p s e "S ta r t " a t (2 .5 ,2) ;

c l : c i r c l e "1" a t (1 , l) ;

c2: c i r c l e "2" a t (2 , l) ;

c3: c i r c l e "3" a t (3,1) ;

c4: c i r c l e "4" a t (4 , l) ;

arrow from e l . ? t o c l . ? ;

arrow from e l . ? t o c2 .? ;

arrow from e l . ? t o c3 .? ;

TUGboat, Volume 13 (1992), No. 4

Start
sentence

Figure 4: Simple sentence

Figure 3: Ellipse and arrows to circles

arrow from el.? to c4.?;

4.2.2 Drawing Boxes

A diag box is a rectangle which has sides paral-
lel with the x and y axes. A box may include a
text string placed at its center. A box may be de-
scribed by giving two corner points or by specifying
its height, width and center point. A box speci-
fied by corner points must specify two corners which
must be opposite corners for the box. The syntax
allows the keywords from and to to be optional.

A box command without two corner points
specifies a box by height, width and center point.
The predefined variables boxht and boxwid provide
convenient defaults and the current point is used for
the center if it is omitted.

drawbox + objectname box boxopts

boxopts + E

+ boxopts from ptexpr to ptexpr

+ boxopts label

+ boxopts height expr

+ boxopts width expr

+ boxopts invisible

+ boxopts at ptexpr

objectname + E I IDENTIFIER :

label -+ S T R I N G

from -+ E 1 from
to E I to

at E 1 at

Notice that a box can be invisible. This can
be useful for drawing lines between words in a parse
tree. Consider the following code and its diagram in
Figure 4:

scale = 1.5;

boxht = 0.3;

bl: box invisible width 1.5 "sentence1'

at (2,2> ;
b2: box invisible width I "subject"

at (1,l);
b3: box invisible width 1 "verb"

at (2,l);
b4: box invisible width I "object"

at (3,l);
line from bl.? to b2.?;

line from bl.? to b3.?;

line from bl.? to b4.?;

4.2.3 Drawing Circles and Ellipses

A diag circle is defined by its radius and center
point. The default for the radius is provided by
the variable "circlerad", while the center point de-
faults to the current drawing position. An ellipse is
defined similarly except that an ellipse has a ma-
jor axis and a minor axis rather than a radius. In

diag the major axis always refers to the x axis of
an ellipse and the minor axis refers to the g axis.
The defaults for the ellipse axes are the variables
"majoraxis" and "minoraxis".

drawcircle +

circleopts +

+

--+

+

drawellipse +

ellipseopts +

+

objectname circle circleopts

E

circleopts label

circleopts radius expr

circleopts at ptexpr

objectname ellipse ellipseopts

E

ellipseopts label

ellipseopts major expr

ellipseopts minor expr

ellipseopts at ptexpr

4.2.4 Drawing Lines and Arrows

There are two basic ways to draw lines and arrows.
First you can specify the start and end points for
the line. The keyword from is optional, but the
keyword to is required if the end point is specified.
The second way to specify a line is to specify the end
point, a direction and a line length. The only possi-
ble directions are up, down, left and right. The start
point defaults to the current point and the direction
defaults to right.

Text may be drawn at the midpoint of the line
or arrow. Following a text string you may option-
ally specify where to place the text relative to the
midpoint of the line. The default is to place the text
slightly above the midpoint.

Here is the full syntax for line and arrow draw-
ing:

482 TUGboat, Volume 13 (1992), No. 4

drawline +

lineopts --t

4

i

4

4

direction +

drawarrow 4

where 4

4

l ine lineopts

E

lineopts label where

lineopts from ptexpr

lineopts t o ptexpr

lineopts direction expr

u p 1 down I left I right

arrow lineopts

E 1 above I below

left I right

4.2.5 Placing Text at Arbitrary Positions

It is possible to place a text string at any arbitrary
position of a diagram by entering the string followed
by the position for the string. The keyword a t is op-
tional and the position defaults to the current posi-
tion.

drawtext -+ S T R I N G a t ptexpr

+ S T R I N G

4.2.6 Drawing Circular Arcs and Curves

There are two types of curves supported by diag.

They are both circular arcs, but they are given sep-
arate commands for simplicity. The first type of
circular arc is drawn with the arc command. It is
always a 90 degree arc in one of the four quadrants.
Such an arc is specified by starting point, quadrant
and direction. The starting point defaults to the
current point. The quadrant is specified as ur, u l ,

11 or l r to indicate upper-right, upper-left, lower-
left or lower-right. The direction is either cw or ccw

to indicate clockwise or counter-clockwise.
The second type of arc is specified by start

point, end point and curvature. The curvature is
specified by the keyword bend followed by a number
or an expression. The curvature defaults to value of
the variable curvature. In general, the curvature
should be between 0 and 1, but not very close to
either.

The bend keyword is illustrated in Figure 5. In
this figure the bend was set to 0.2. This means that
the height of the curve, h, is 0.2 times the length of
the chord c. The code to produce Figure 5 is:

sca le = 2 . 0 ;

curve c w bend 0 . 2 (1 , l) t o (5 ,1) ;

l i n e s t y l e = dashed;

l i n e "cl' below from (1 , i) t o (5 , l) ;

l i n e "hl' l e f t from (3 , l) t o (3 , 1 . 8) ;

It is also possible to place an arrow head on
the end point of a curve. This is done by placing
a greater than symbol in the command. The full
syntax for drawing arcs and curves is:

Figure 5: Curvature definition

drawarc +

arcopts +

4

+

i

4

drawcurve +

C U T U ~ O ~ ~ S --+

-i

4

4

4

i

i

arcdir --+

quadrant -+

arc arcopts

E

arcopts quadrant

arcopts arcdir

arcopts radius expr

arcopts ptexpr

curve curveopts

E

curveopts label where

curveopts >
curveopts arcdir

curveopts bend expr

curveopts f r o m p t e x p ~

curveopts t o ptexpr

CW I ccw

ul I u r I 11 I lr

4.2.7 Changing the Current Drawing

Position

There is a goto command to explicitly change the
current drawing position of diag. It consists of the
keyword goto followed by an arbitrary point expres-
sion.

gotostatement + goto p t e x p ~

4.3 Predefined Variables

There are a number of variables created by diag

which can be changed to control things like line
thickness and arrow head length. These variables
are different from user-created variables only in the
sense that they exist when diag starts and diag uses
their values for various purposes.

4.3.1 arcrad and circlerad

The arc command will draw a 90 degree arc of
a certain radius. If the radius is not specified, it
will default to the value of arcrad. Similarly the
circle command defaults to a radius of circlerad.

Both these variables are measurements in inches un-
less sca le has been changed. The initial values for
arcrad and circlerad are each 0.25 inches.

4.3.2 boxht and boxwid

The box command can be used to draw a box with
a center at a certain position. In that usage the user
can specify the height and width of the box, or allow
diag to use boxht and boxwid as default values.

TUGboat, Volume 13 (1992), No. 4

These are measurements in inches by default. The

initial value for boxht is 0.5 inches and the initial

value for boxwid is 0.75 inches.

4.3.3 curvature

The curve command allows the user to specify the

curvature using the bend keyword. If bend is not

specified, the value of curvature will be used in-

stead. The initial value for curvature is 0.2.

4.3.4 dashlength

If the linestyle has been selected as dashed or dotted,

then the variable dashlength can be set to control

the length of dashes or the spacing of dots. This is a
measurement in inches by default. The initial value

of dashlength is 0.1 inches.

4.3.5 head

The length of the head of an arrow can be controlled
by the head variable. This is a measurement in

inches by default. The initial value of head is 0.1
inches.

4.3.6 linestyle

The variable linestyle can be used to change the

line style from solid to dashed or dotted. The
initial value of linestyle is solid. The variables

solid, dashed, and dotted have the values 0, 1 and

2 matching their fig values.

4.3.7 linethickness

This variable controls the thickness of lines in pixels.

Its initial value is 5 pixels.

4.3.8 majoraxis and minoraxis

These variables are used as defaults by the ellipse

command. The x axis is always considered the ma-

jor axis and the the y axis the minor axis. These
variables represent inches by default. The initial

value for majoraxis is 0.3 inches and the initial

value for minoraxis is 0.2 inches.

4.3.9 pi

This variable has the value 3.14159 and should not

be changed.

4.3.10 scale

The default scaling of coordinates in diag is in

inches. This can be overridden by assigning a new
value to scale. Coordinates in diag are divided by

scale before translating into dot positions on the

page. This means that making scale greater than
1.0 will shrink the diagram.

5 Defining and Using Macros

The macro facility of diag is implemented as a text
replacement algorithm by the lexical analyzer. A

macro is defined by the keyword define, the name

of the macro, and its replacement text. The replace-

ment text is identified by starting and ending it with

a special symbol such as '/,.
A macro invocation is either the macro name

followed by a semicolon or the name followed by
parameters in parentheses. These parameters are

positional parameters separated by commas and are

referred to within the macro's replacement text as

$1, $2, . . ., $9. There can be up to nine positional

parameters.
A sample macro definition to define a macro to

draw three boxes centered at a given position would

be

define ThreeBoxes #

box at ($1-boxwid, $2) ;

box at ($1 ,$2) ;

box at ($l+boxwid,$2) ;

This macro be used to create a three by three
arrangement of boxes using

p = 2;

ThreeBoxes (3, p) ;

ThreeBoxes (3, p-boxheight) ;

ThreeBoxes (3, p+boxheight 1;

A Larger Diagram

this section a diagram is shown of an array

pointers to structures containing pointers and
names. This is a reasonable example for illustrat-

ing macros. The code for this example is split up

into several sections along with some explanation.

The diagram is shown in Figure 6.
First there is a macro to draw a NULL pointer

to the right of some of the array elements. This

macro uses the variable bw to determine how long

the constituent lines should be.

define Null %
line right bw * 1.0;
line down bw * 0.15;
X = x;

Y = y;

line (X-0.2*bw,Y) to (X+0.2*bw,Y);

line (X-O.I25*bw,Y-0.05*bw)

to (X+o.l25*bw ,Y-0. O5*bw) ;

line (x-0.05*bw,~-O.l*bw)

to (X+O.O5*bw,Y-O.l*bw);

%

Next there is a macro to draw a box and then
move down bw inches. This macro draws the box

484 TUGboat, Volume 13 (1992), No. 4

-

, Bob \ Bea
-

I A \

Figure 6: Symbol Table with an Auxiliary Linked
List

at (xi, y1) and then modifies y1 to prepare for the
next vertical box.

define Vbox %
box (xi ,yi) to (xl+bw,yi-bw) ;

yi = y1 - bw;
goto (xl+bw/2, yi+bw/2) ;

%

Similarly there is a macro to draw a horizontal
box at (xi,yl) and move to the right bw inches.
This macro is used to draw structures containing
three boxes. In the struct macro each Hbox is given
a name to make it easy to connect the components
later. The first parameter of struct is the prefix
for the names of the boxes. The middle box is given
that name and the others are given that name with
an added 1 or r.

define Hbox %
box $1 (xi,yl) to (xl+bw,yi-bw);

xi = xi + bw;

define struct %
x1 = $2 - bw * 1.5;
yi = $3 + bw * 0.5;
$11: Hbox;

$1: Hbox ($4 ;

$ir: Hbox;

%

Now begins the first non-macro code. First the
variables xl, y1 and bw are initialized and then the

array of pointers to records is drawn along with sev-
eral null pointers.

scale = 1.8;

xi = 1;

y1 = 4;

bw = 0.6;

Place the array of record pointers

on the left.

A: Vbox;

B: Vbox;

Null ;

C: Vbox;

Null ;

D: Vbox;

E: Vbox;

Null ;

F: Vbox;

Null ;

G: Vbox;

H: Vbox;

Next the variable bw is shrunk to make slightly
smaller boxes and then the structures are drawn.
After the structures on a row are drawn, connecting
arrows and null pointers are drawn.

bw = bw * 0.8;

Add the 'B' records

struct(s1,3.25,A.y,"C\small Bob");

struct(s2,5.5,A.y,"C\small Bea");

arrow from A to s1l.w;

arrow from slr to s21.w;

goto s2r;

Null ;

Add the 'J' records

struct (s3,3.25,D. y, "(\small Joe)") ;

struct(s4,5.5,D.y, "{\small Jan)") ;

arrow from D to s31.w;

arrow from s3r to s41.w;

goto s4r;

Null ;

Add the 'S' records

struct (s5,3.25, G. y, "I\small Sue)") ;

struct (s6,5.5,G.y,"{\small Sam)") ;

arrow from G to s51.w;

arrow from s5r to s61.w;

goto s6r;

Null ;

TUGboat, Volume 13 (1992), No. 4 485

Add the 'T' record

struct(s7,3.25,H.y,"C\small Tom)");

arrow from H to s71.w;
goto s7r;

Null ;

Finally we add a collection of dashed arrows
and curves to indicate another linked list comprising
the same set of records.

Add auxiliary linked list pointers

linestyle = dashed;

arrow from sll to s31.n;

goto s31;

line down bw;

arc 11 ccw;

line right s4 .x-s3 .x-2*arcrad;

arc lr ccw;

arrow to s41.s;

arrow s41 to s21.s;

ya = (s2.y+s4.y) / 2;
yb = (s4.y+s6.y) / 2;
curve ccw bend 0.1 from s21

to (s4r.x,ya);

curve cw bend 0.4 to (s4r.x,yb);
curve > ccw bend 0.1 to s61.n;
curve > ccw bend 0.2 from s61 to s51.n;
arrow from s 5 1 t o s71.n;

goto s71;

line down bw*1.5;

X = x;
Y = y;

linestyle = solid;

line (X-0.2*bw,Y) to (X+0.2*bw,Y);

line (X-0.125*bw,Y-0.05*bw)

to (X+O. l25*bw ,Y-0 .05*bw) ;

line (X-0.05*bw,Y-O.l*bw)

to (X+0.05*bw1Y-O.l*bw);

7 Possible Additions to the Language

The most obvious features missing from the lan-
guage are conditional statements and loops. These
would clearly be useful, but are not critical for the
anticipated uses of diag.

If diag needs conditional statements and loops
at some future date, it is likely that procedures
would also be added. The current implementation
uses macros which look like procedure calls, but they
use global variables. There is no such thing as a
local variable and using macros which manipulate
variables is a hazard. Procedures would eliminate
this problem.

Another possible improvement to diag would
be to use the ".?" positioning operator with the
curve command. This would be relatively easy to
implement and could be useful for some diagrams.

It would be useful to draw and fill polygons.
This is supported by transf ig and would be easy
to add to diag. Another feature supported by
transfig which could be added is a spline draw-
ing command.

There are many more features which could be
added to the diag language. The author selected the
most basic commands for the first version of diag.
It is anticipated that the language will grow as needs
arise.

References

[I] Micah Beck, TransFig: Portable Figures for
TEX, Cornell University Dept. of Computer Sci-
ence Technical Report #89-967, February 1989.

[2] Brian W. Kernighan, PIC - A Graphics Lan-
guage for Typesetting, Bell Laboratories Com-
puting Science Technical Report 85, March
1982.

[3] Donald E. Knuth, The 7&Xbook, Addison-
Wesley, 1986.

[4] Conrad Kwok, EEPIC: Extensions to EPIC

and Picture Environment, Software doc-
umentation, University of California, Davis,
Dept. of Computer Science, July 1988.

[5] Leslie Lamport, l8W: A Document Prepara-
tion System, Reading, Mass.: Addison-Wesley,
1986.

[6] Joseph F. Osanna, NROFF/TROFF User's
Manual, Bell Laboratories Computing Science
Technical Report 54, October 11, 1976.

[7] Sunil Podar, Enhancements to the Picture En-
vironment of U r n , State University of New
York at Stony Brook, Dept. of Computer Sci-
ence, Technical Report #86-17, July 1986.

[8] Michael Wichura, The P- Manual, Univer-
sity of Chicago, November 1986.

o Benjamin R. Seyfarth
Department of Computer Science

and Statistics
The University of Southern

Mississippi
Southern Station
Box 5106

Hattiesburg, Mississippi
39406-5106

