
TeX and SGML: A Recipe for Disaster?

Peter Flynn
University College
Cork, Ireland
Internet: p f l ynnecur i a . ucc. i e

Abstract

The relationshp between T$ and SGML (Standard Generalised Markup Language,
IS0 8879) has often been uneasy, with adherents to one system or the other dis-
playing symptoms remininscent of the religious wars popular between devotees
of T$ and of word-processors.

SGML and T$ can in fact coexist successfully, provided features of one sys-
tem are not expected of the other. T h s paper presents a pilot program to test
one method of acheving such a cohabitation.

Introduction

For many years, SGML and its relationslup with T$
has been a frequent topic of presentation and discus-
sion. Network users who read the TEXhax digest and
the Usenet newsgroup comp. t e x t . t e x will be fa-
miliar with the sometimes extensive cross-postings
to the sgml-1 mailing list and the comp. t e x t . sgml

newsgroup. Two extremes are apparent in the mis-
understandings: that SGML is some kind of desktop
publishing (DTP) system; and that T$ or are exclus-
ively for structured documentation. Such problems
highlight the lack of information about the design of
either system, as available to the novice, but also re-
veal the capabilities and limitations of both systems.

In fact, there is a parlous level of understanding
about both T$ and SGML even in the printing and
publishng industry, where one would expect a more
sophisticated degree of understanding: in this au-
thor's personal hearing, so-called experts from ma-
jor publishng houses have criticised TEXs 'lack of
fonts' and SGML's 'lack of font control'.

It is perhaps worth emphasising the difference
at this stage, for the non-expert, in that T$ is a
typographic system principally for the creation of
beautiful books (Knuth, 1984) (but also other printed
documents: it is intended for putting marks on pa-
per) and SGML (Goldfarb, 1990) is the international
standard for describing the structure of documents
(intended for document storage and control, whch
could, of course, include typesetting as one of many
possibilities).

Publishing: the view from outside

A recent article (Beard, 1993) quotes John Watson,
London Editorial Director of Springer-Verlag:

We can use JAT$ files, which many of our au-
thors of books or papers with complex maths
find convenient, but if they need serious edit-
ing, it's so expensive we have to mark up
hardcopy and send it back to the author to
make the changes. T$ and bT$ are only
a stop-gap. SGML hasn't really reached our
authors yet. What's really needed is a WYSI-
WYG system that's as universal as T$, prefer-
ably in the public domain so all our authors
and freelances can use it, and easy for sub-
ject specialists to edit on screen. And of
course the output should be Linotron- as well
as Postscript-compatible. (Emphasis added.)

This view of the world expresses an attitude com-
mon in the publishing field, that editing T$ is dif-
ficult, that the nature of T$ is impermanent, and
that the only goal of all writing is for it to be prin-
ted on paper. Whde SGML has indeed 'not reached
our authors yet', that is hardly the fault of SGML,
when editing systems for handling SGML are readily
available for most platforms.

The speaker's desires are very laudable,
however much one may agree or disagree with the
implied benefits of WYSIWYG systems, in that the
software should be universal, easy to use and in the
public domain. The speaker's complaints, however,
deserve further analysis.

Editing. The speaker seems here to be confusing
two aspects of the techmcal editorial process: math-
ematics editing and copy editing (editing text for
production), both of whch have to date been per-
ceived as matters for the specialist, as those who use
T$ in a professional pre-production capacity with
publishers as clients have long recognised.

TCrGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Peter Flynn

In the confusion, sight has been lost of the fact

that editing a file of T$ source code need be no more

of a problem than editing any other kind of file, if an

adequate macro structure is provided, and it is prob-

ably less of a problem the better structured the text
is. If the publisher's authors are unable or unwill-
ing to adhere to the very straightforward guidelines

put out by most publishers, it would appear a little

ingenuous to blame T$ for their deficiencies.

There are large numbers of literate and numer-

ate graduates with sometimes extensive T$ exper-
ience: if (as seems to be implied) editing may now

be entrusted to authors, a publisher has little ex-

cuse for not employing some of these graduates on
non-specialist editorial work. It is, however, as un-

nerving to hear publishers so anxious to encourage

authors to undertake pre-press editing as it would

be to hear them encourage non-mathematicians to
undertake mathematical editing: it is precisely be-

cause the authors do not normally possess the spe-

cialist knowledge to do this that the work is handled

by in-house or contract editors. The mechanics
of editing a T$ document are not especially diffi-

cult, given proficiently-written macros, and there are

some crafty editor programs around to assist t h s
task. Training courses in elementary T$ abound,
so if a publisher is serious about cutting pre-press

costs by using T$, the way lies open.

The typographic skll resides in implementing
the layout: taking the typographer's specifications
and turning them into T$ macros to do the job,

ideally leaving the author and subsequent editor

with as little trouble as possible to get in the waj7
of the creative spirit. The implementation of design

is, however, increasingly being left to the author,

who may understandably resent having to undertake
what is usually seen as a task for the publisher, and

who may be ill-equipped to perform this task (Fy-

ffe, 19691, especially if a purely visual DTP system is
being used.

Impermanence. T$ has been around for nearly 15

years, longer than any other DTP system, and quite

long enough for the mantle of impermanence to be

shrugged off: there is no other system whch can
claim anywhere near that level of stability and ro-

bustness. However, the present writer would be

among the first to disclaim any pretensions on the

part of T$ to being the final solution to a publisher's
problems (although properly implemented it has no

difficulty in seeing off the competition). It is diffi-
cult, however, to understand what T$ is supposed
to be a stop-gap for, because the logical conclusion a

reader might draw from the quotation above is that

SGML is some lund of printing system, whch it is

not, although it can be used for that purpose (for

example, in conjunction with something like T$).

Printing as a goal. WYSTCVYG T$ systems exist for

both PCs and Macintosh platforms, if a user feels
compelled to see type springing into existence pre-

maturely. There are also similar editors for SGML,
ranging from the simple to the sophisticated. The

misconception seems to be that printing on paper is

always going to be the goal of the writer and the pub-
lisher, but even if we accept this goal as the current

requirement, there appears to be no reason why both

T$ and SGML cannot be used together to achieve
this.

The increasing importance being attached to hy-

pertext systems, especially in academic publishing,
is amply evidenced by the presentations at schol-

arly conferences, for example (Flynn, 1993) the re-

cent meeting of the Association for Literary and Lin-

guistic Computing and the Association for Comput-

ing and the Humanities. While paper publication
will perhaps always be with us, alternative meth-

ods are of increasing importance, and systems such

as SGML are acknowledged as providing a suitable

vehicle for the transfer and storage of documents
(Sperberg-McQueen and Burnard, 1990) requiring

multiple presentations.

Software development. Before we leave this ana-
lysis, it is worth asking if publishers who are seek-

ing an easy-to-use, widely-available, public-domain

WYSIWYG-structured editor would be prepared to

back their demands with funding for the develop-

ment of such a system. Organisations such as the
Free Software Foundation are well-placed to support

and coordinate such an effort, and there are ample
human resources (and considerable motivation) in

the research and academic environment to acheve

the target.

Document Type Disasters

The newcomer to SGML is often perplexed by the

apparent complexity of even simple Document Type

D e h t i o n s (DTDs, whch specify how a document

is structured). Although there are several excellent
SGML editors on the market, many users are still

editing SGML in a plain file editor with perhaps the

use of macro key assignments to speed the use of

tags and entity references. Worse, the task of get-

ting the document printed in a typographic form for
checking by proofreaders who are unfamiliar with

SGML can present a daunting task without adequate
software.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TeX and SGML: A Recipe for Disaster?

while we have said that such software is read-

ily available, there are two inhibiting factors: cost

and complexity. Although we are now beginning to

see wordprocessor manufacturers take an interest
in SGML (Wordperfect, for example), the impecuni-

ous researcher or student is still at a disadvantage,

as WYSIWYG software for SGML is still expensive for

an individual.

The problem of complexity is not easily solved:

designing a document at the visual level of typo-

graphy is already understood to be a specialist task

in most cases, and designing a document structure,
which is a purely conceptual task, without visual

representation, is at a different level of abstraction.

However, document structure design is not normally

the province of the publisher's author, and should
not affect the author's use of a structured-document

editor, once the initial concept has been accepted.

Into print. The comp . t e x t . sgml newsgroup re-

peatedly carries requests from intending users for
details of available editing and printing software,

which are usually answered rapidly with extensive

details. The low level of SGML's public image (the

'quiet revolution' (Rubinsky, 1992)) indicates one
possible reason why the system is still regarded with

misgivings by some people.
There have been several attempts in the past to

develop systems which would take an SGML instance

and convert its text to a T$ or bT$ file for printing.

The earliest appears to have been Daphne, developed
in the mid 1980s by the Deutsche Forschungsnetz in

Berlin, and the most recent is gf (comp . t e x t . sgml ,

4.6.1993) from Gary Houston in New Zealand (avail-

able from the Darmstadt f t p server). Several other
programs exist, including some written in T$ itself,

but the principal stumbling-block seems to be the

desire to make the program read and parse the DTD

so that the instance can be interpreted and conver-
ted accordingly.

A DTD contains information principally about

the structure of the documents which conform to

it, rather than about its visual appearance. (It is of

course perfectly possible to encode details on visual

appearance in SGML, but this is more the province

of the analyst or historian, who wishes to preserve
for posterity the exact visual nature of a document.)

The DTD is used to ensure conformance, often by an

editor while the document is being written or modi-

fied, or by a parser (a program which checks the syn-

tax and conformity of an instance to its DTD). Given

the easy availability of various versions of a formal

SGML parser (sgml s, from various f t p archives),
there seems to be little point in embedding that pro-

cess again in a formatter. Indeed, one conversion

system reported to this author takes the route of

using sgml s output as its input.

Through all these systems, however, runs the

thread that somewhere in the SGML being used must
reside all the typographcal material needed to make

the conversion to T$ (or indeed any typographical
system) a one-shot process. As has been pointed out,

t h s implies that the author or writer using SGML to

create the document must embed all the necessary
typographical data in the instance. Yet this is en-

tirely the opposite of the natural use of SGML, which

is to describe document structure or content, not its
appearance. Predicating typographic matters ties

the instance to one particular form of appearance,

which may be wholly irrelevant.

Style and content. One of T$'s strongest features
is that of the style file, a collection of macros to im-

plement a particular layout or format. In particular,

where t h s uses some form of standardised naming

for the macros, as with I&T$ or epl ai n , the portab-

ility of the document is greatly enhanced. A single
word changed in the documentstyl e and the entire
document can be re-typeset in an entirely different

layout, with (usually) no further intervention.

The convergence of SGML and TEX for the pur-

poses of typesetting brings two main advantages:

the use of T$'s hghly sophisticated typesetting en-

gine and the formally parsed structure of the SGML

instance. In such a union, those elements of the DTD
whch do have a visual implication would migrate to
a macro file, in whch specific coding for the visual

appearance of the current edition could be inserted,
and the SGML instance would migrate to a T$ or

bT$ file which would use these macros.

In this way, we would avoid entirely the predic-

ation of form within the SGML: it becomes irrelevant

for the author to have to be concerned with the ty-
pographic minutiae of how the publication will look

in print (although obviously a temporary palliative

can be provided in the form of a WYSIWYG editor).

We also avoid tymg the instance to any one particu-

lar layout, thus enabling the republication (or other

reuse) in a different form at a later date with a min-

imum of effort.
The most undemanding form of conversion is

thus one where the appearance is completely un-
referenced in the SGML encoding. This means that

the publisher (or typesetter) has all the hooks on

which to hang a typographc implementation, but is

not restricted or compelled to use any particular one

of them.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Peter Flynn

A pilot program: sgml2 tex

The author's own pilot attempt at this form of
conversion can be seen in the SGMLZTeX program,
available by anonymous f t p from cu r i a . ucc . i e in
pub/tex/sgml Ztex. z i p. This was developed in PCL
(a language written explicitly for high speed devel-
opment on the 80n86 chips): WEB should probably
be the basis for a future version.

The program reads an SGML instance character
by character, and converts all SGML tags into T$-like
control sequences, by removing the < and > delirn-
iters and prepending ' \ s t a r t ' or '\f i ni sh' to the
tag name. Attributes are similarly treated, w i t h
the domain of the enclosing element, and with their
value given in curly braces as a T$ macro argument.
Entity references are converted to simple T$ control
sequences of the same name.

The output from the program is a . t ex file and
a . s t y file. The . tex file contains an ' \ input1 of
the . s t y file at the start, and also a '\byey at the
end; otherwise it is merely a representation of the in-
stance in a form digestible by TEX or BTG. The . s t y
file contains a null definition of every element, at-
tribute and entity encountered in the instance. Thus
the fragment

prepend ' < t t > & b s o l ; s t a r t < / t t > '
becomes

prepend
'\startTT{}\bsol {}s t a r t \ f i n i s h W '

in the . t ex file, with the following definitions
in the . s t y file:

\def\startTT{}
\def\f i ni shTT{)
\def\bsol { }

All line-ends, multiple spaces and tabs in the
instance are condensed to single space characters.

It must be made clear that this pilot is not a
parser: it does not read any DTD and has no under-
standing of the SGML being processed, although a
planned rudimentary configuration file will allow a
small amount of control over the elimination of spe-
cific elements where no conversion is desired. There
is also no capability yet for handling any degree
of minimisation, so all markup must be complete
and orthogonal (as many parsers and editors already
have the capability to output such non-minimised
SGML code, this should not cause any problems).
As the DTD is not involved, the instance being con-
verted must therefore also have passed the parsing
stage: it is the user's responsibility to ensure that
only validly-parsed instances are processed. Addi-
tionally, n o attempt has been made to support sci-

entific, mathematical or musical tagging, as t h s is
outside the scope of the pilot.

As it stands, therefore, the output file is a valid
TEX file, although trying to process it with null defini-
tions in the . s t y file would result in its being treated
as a single gigantic paragraph. However, editing
the . s t y file enables arbitarily complex format-
ting to be impIemented: the present document
(http: //curi a . ucc. i e / t l h/curia/doc/achall c. html)
is a simple example.

Conclusions

The pilot program certainly is a stop-gap, being
severely limited: there are many other related areas
where SGML design, editing, display and printing
tools are still needed. There is still no portable and
widespread public-domain dedicated SGML editor
such as would encourage usage (although an SGML-
sensitive modification for emacs exists and the in-
terest of Wordperfect has been noted). Although
SGML import is becoming available for some high-
end DTP systems, migration and conversion tools
are still at a formative stage.

One particular gap is highlighted by the need for
a program to assist the user in building a DTD, with a
graphical interface which would show the structure
diagrammatically, so that permitted and prohibited
constructs can be analysed, and a valid DTD gener-
ated.

SGML has now passed the phase of 'new
product' and is on its way to greater acceptance,
but the real disaster would be for it to become an
isolated system, unrelated to other efforts in com-
puting technology. This will only be avoided by the
concerted efforts of users and intending users in de-
manding software whch can bridge the gaps.

Bibliography

Beard J. "The art and craft of good science", Personal
Computer World, page 3 50, June 1993.

Fyffe C. Basic Copyfitting, London: Studio Vista, page
60, 1969.

Goldfarb C. The SGML Handbook, OUP, 1990.

Knuth D.E. The Tgbook, Addison-Wesley, 1984.

Rubinsky Y. "The Quiet Revolution", keynote speech,
SGML92 Conference, October 1992.

Sperberg-McQueen C.M. and Burnard L., (eds).
Guidelines for the Encoding and Interchange
of Machne-Readable Texts, Draft version 1.1,
ACH/ACL/ALLC, Chcago & Oxford, 1990.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

