
244 TUGboat, Volume 17 (1996), No. 3

Software&Tools

The Joy of TEX2PDF|Acrobatics with an

Alternative to DVI Format

Petr Sojka, Han The Thanh, and Ji�r�� Zlatu�ska

Abstract

This paper presents a discussion about generating
Portable Document Format (PDF) directly from
TEX source using a prototype TEX2PDF program.
This is a derivative made from the TEX source which
allows us to bypass DVI output generation, and to
produce documents in Adobe PDF directly. Motiva-
tions for the TEX2PDF approach are discussed and
further possible enhancements are outlined.

1 Motivation

Go forth now
and create masterpieces

of the publishing art!
Don Knuth [19], p. 303.

General acceptance of TEX for the publishing of
technical documents has spread enormously during
the last two decades. Since TEX's inception, how-
ever, new standards have emerged in the publishing
world. SGML and LATEX for markup, PostScript
and Portable Document Format as page description
languages (PDL), are just a few of the buzzwords in
the arena. Publishers are moving towards the art of
creating electronic documents.

TEX's typesetting engine outputs its results
in the device independent (DVI) page description
format [9, 10]. To avoid duplication, and to be
backward compatible, various extensions to the DVI
format have been used via the \special command.
Do you need color? Use color supporting \specials.
Do you need PostScript fragments in the .dvi �le?
Graphics in various formats? PDF fragments in the
.dvi �le? Hypertext? Document/object structure
markup for an SGML driver? Every new application
usually ends up as a new set of \specials, which are
unfortunately, not yet standardized [27, 25].

Do you need portable object reuse in your
.dvi �le? Sound? Portable Multiple Master font
parameters? No \specials for these are in sight.

As a result of all this, documents in DVI format
are not really portable, as they usually contain a lot
of \specials, and visual appearance depends on the
device drivers available at the reader's site. These

This paper was awarded the UK TEX User Group's

Cathy Booth memorial prize at TUG '96 in Dubna, Russia.



TUGboat, Volume 17 (1996), No. 3 245

and similar problems and thoughts have led us to
research on the possibility of generating portable
electronic documents which will o�er widest range of
functionality from well established and widely used
(LA)TEX sources.

In section 2 we give an overview of current
formats relevant to electronic document storage. In
section 3 we discuss the current possibilities for
producing PDF|a possible format of choice for
electronic documents. We suggest a new approach
by means of the TEX2PDF program in section 4
and, in section 5, its merits with respect to other
approaches. We conclude with a discussion of
object reuse in section 6, and future developments
in section 7.

2 Formats for Electronic Document

Delivery

2.1 DVI Format

A .dvi �le is the standard output of a TEX run and
is often used as a format for storage and exchange
of typeset TEX documents.

DVI format is heavily (but not exclusively) used
e.g. in the Los Alamos e-Print archive http://xxx.
lanl.gov/. Several tens of thousands documents
are available (typeset by autoTEXing scripts) from
there. The disadvantage is that the documents are
not `self-embedded', which means that they rely
on standardisation of font names and availability
of fonts at the document consumer's site. Hyper-
text extensions to the DVI format have been ac-
complished by a set of HTML-like \specials de-
�ned by the HyperTEX project (http://xxx.lanl.
gov/hypertex/) and special versions of previewers
(xhdvi), dvihps and ghostscript (ghosthview)
have been developed.

2.2 Portable Document Format

PDF [5] is a page description language derived from
Adobe's PostScript language [2]. The design goals
are:

� Rendering speed|algorithmic constructs were
removed from the language.

� Portability|as a cross platform format, Acro-
bat Reader is available free of charge on major
platforms.

� Compactness| the Lempel, Ziv, Welsh com-
pression algorithm was licensed from UNISYS

for maximum compression of �les.1 Multiple
Master font technology, partial font download-

1 Latest news from Adobe says that ZIP compression has

been added as well, leading to even better compression ratios.

ing and built-in fonts in the Acrobat Reader
lead to a minimum size for portable documents.

� WWW support|hypertext links to other doc-
uments on the Internet are allowed. PDF ver-
sion 1.2 and Acrobat 3.0 (Amber) introduced
a linearized arrangement of objects within PDF

documents, allowing for incremental download-
ing across the Internet.

� Extensibility|documents can be extended
without losing the old version; notes (stickers)
can be added to a document by the readers.

� Password protection|access to a document
can be protected by a password.

� Object structure|allows for access to individ-
ual pages, with possibility of one-pass genera-
tion.

� Easy exchange|ASCII (7bit) PDF �les can
be generated for better portability and email
exchange.

PDF �les can be embedded directly in an HTML

page using the HTML <EMBED> tag [1]. These are
becoming more and more popular in the WWW

world, as they render faithfully what the author
saw (modulo color rendering and resolution of an
end-user's display).

2.3 SGML

Roll on SGML, and real document storage.
Not just this strange PDF thing

which traps the visuals like an insect in amber . . .
James Robertson on comp.text.pdf

SGML is a widely accepted international standard
(ISO 8879) [12, 6, 3] for document markup. It is
the format of choice for document storage chosen
by many publishers [23, 7, 4]. It is a language
for describing markup, aimed at long-term storage,
but not at visual layout. As TEX's typesetting
engine is still the state-of-the-art, the perspective
of typesetting of SGML documents via LATEX3 with
a TEX based engine is a viable option.

3 Current Possibilities for Producing PDF

from TEX

If PDF is required as the end format, with currently
available programs one has to generate PostScript
from a .dvi �le and then to `distill' (using Adobe's
Distiller program) the result to PDF. Some com-
ments and suggestions on how to create PDF �les
from TEX are collected in [17]. Problems with con-
�guring fonts are described in [28] and [8].



246 TUGboat, Volume 17 (1996), No. 3

4 The Name of the Game

There still are countless important issues
to be studied, relating especially to the many

classes of documents that go far beyond
what I ever intended TEX to handle.

Don Knuth [21], p. 640

Motivated by a note by Don Knuth to one of the
authors (private communication, 1994), who men-
tioned he expected people would attempt to create
derivations from TEX suitable for, e.g., outputting
PostScript instead of DVI, a project for creating
PDF �les directly from the TEX source has been at-
tempted [14], introducing the possibility of creating
either DVI or PDF output. The working name of this
game is TEX2PDF. An example of the TEX source
taking advantage of the new possibilities is shown
in �gure 1 and the resulting document as viewed
with Adobe Acrobat Reader is shown in �gure 2 on
page 251.

4.1 New primitives

New primitives have been introduced in TEX2PDF
in order to allow for more straightforward use of
hypertext features from within TEX-like source.
Most of their parameters are taken implicitly from
the context of use in TEX terms, which simpli�es
their use considerably. We do not specify the full
syntax here, because it is not yet fully stable.

\pdfoutput changes TEX2PDF behaviour from
DVI-producing mode to PDF-producing one.

\pdfannottext takes an argument which speci�es
the text of an annotation to be created at the
current position.

\pdfannotlink, \pdfendlink allows the user to
specify hypertext links with all of the link
attributes available in the PDF speci�cation.
An integer argument is used as a key to the
corresponding anchor. If no link border has
been speci�ed, it is computed for all boxes
between \pdfannotlink and \pdfendlink, so
the link will automatically become multiline if
a line break occurs in between.

\pdfoutline allows for the generation of book-
marks; bookmarks can be hierarchically struc-
tured.

\pdfdestxyz, \pdfdestfit, \pdfdestfith, \pdf-
destfitv provide speci�cation of various types
of anchors with zooming and �tting possibil-
ities.

\pdfdestfitr, \pdfendfitr specify the position
of anchor corners. In this case, the anchor area
is computed from the corners.

4.2 Font handling

Font handling in TEX2PDF is currently limited to
Type1 fonts only. Metric information is extracted
from the pfb �le. Font name mapping is handled
using an auxiliary font mapping con�guration �le
introducing the list of fonts available, together with
the information on the type of font embedding and
its usage.

Virtual fonts [18] are supported in TEX2PDF.
As they are in fact part of .dvi �les, they have to
be unfolded before PDF is output, as in today's DVI
drivers.

4.3 Compression

Compression is allowed in the PDF speci�cation,
and several types of compression �lters can be
used; JPEG compression for color graphics, LZW

and ZIP compression for text and graphics, and
CCITT Group, Run Length and LZW compression
for monochrome images.

As the LZW compression algorithm is licensed
by UNISYS, we cannot distribute TEX2PDF with
LZW support, but we used it for testing runs
to compare TEX2PDF with Distiller (see table on
the following page). However, the even more
e�ective ZIP compression will be available in PDF

version 1.2, avoiding the need for LZW compression
in TEX2PDF, and the patent problems. The test
�gures show that TEX2PDF generated an even more
compact PDF �le than Adobe Distiller on standard
text �les.

4.4 Graphics

\specials are not yet handled by TEX2PDF. As
most of the graphics included in TEX documents
are PostScript and TIFF, at least support for the
PostScript to PDF and TIFF to PDF conversion will
have to be included in the future.

4.5 Implementation

The implementation of of TEX2PDF is realized as
a web change �le to the latest TEX source [20]. This
implies that TEX2PDF is as portable as TEX itself
is. Karl Berry's web2c package has been used for
the development and for producing a running UNIX
version. We expect easy recompilation on any UNIX
platform.

5 Pros and Cons

I was constantly bombarded by ideas
for extensions, and I was constantly turning

a deaf ear to everything that did not �t
well with TEX as I conceived it at the time.

Don Knuth [21], p. 640



TUGboat, Volume 17 (1996), No. 3 247

To compare TEX2PDF with the other methods of
producing a hypertext PDF document from a TEX
�le, we did several testing runs. They were done
on a Sun Sparc 10 under the Solaris 2.4 operating
system. Measurements were done using the time

program (CPU times are listed). We used tex.tex,
generated from the TEX source (tex.web) �le, as
the testing document. For the hypertext version we
used a slightly changed version of webmac.tex (see
http://www.cstug.cz/~thanh/tex2pdf).

In both time and size comparisons TEX2PDF
beats its competitors (see tables on the following
page). This is mainly due to the absence of inter-
mediate DVI and PostScript formats in TEX2PDF,
allowing for better PDF optimisation. TEX2PDF is
slightly slowed down by pfb �le parsing.

The users familiar with the (emacs + TEX +
xhdvi (+ ghostscript)) suite of programs might
want to switch to (emacs + TEX2PDF + xpdf),
thus speeding up the document debugging cycle
considerably.

TEX2PDF is written in web so that its source
blends naturally with the source of TEX the pro-
gram. The obvious bene�t is absolute compatibility
with TEX proper; the actual code which drives the
typesetting engine is that of Don Knuth (modulo
whatsits use for the hypertext primitives added in
TEX2PDF). While this conformance to TEX source
greatly bene�ts from Don's appreciation of stability,
it makes the implementor's life more di�cult in the
world where PDF still evolves. It is also hard to
debug TEX2PDF without incremental compilation.
When we come to add implementation of \special
commands, maintenance will become tough.

The changes introduced in new versions of PDF
are motivated by achieving better performance when
handling Acrobat documents, and so TEX2PDF is
bound to have the PDF-generating modules mod-
i�ed or rewritten so that maximum bene�t of the
features supported by PDF technology can be used.
The fact that PDF speci�cation has been made pub-
lic is crucial to success of this approach.

The TEX2PDF approach is naturally backward
compatible with TEX|in fact, if PDF output is
not switched on, it can still generate DVI output
identical to that of TEX. Just by rede�ning some
cross-referencingmacros, the new hypertext features
of TEX2PDF can be instantly used even without
modifying the markup of old LATEX documents.

6 Object Reuse

Using well-designed formats results
in LATEX source that clearly re
ects

the document structure.
T. V. Raman [24]

With PDF, there is the possibility of taking advan-
tage of the object structure and manipulation speci-
�ed within a PDF �le to store elements of document
structure (higher level document model) in the PDF
�le generated by the application (TEX2PDF). Some
work has been already done in this direction by
de�ning Encapsulated PDF (EPDF) blocks and their
reuse [26]. This format, however, is not supported
or used by a wide variety of applications.

The logical structure of a document model is
also urgently needed in applications like AsTeR [24],
which reads LATEX documents using a speech syn-
thesizer. Developing an application that is capable
of reading aloud enriched PDF �les might become
possible.

Our suggestions for further work could lead
to primitives which allow handling of PDF objects
stored in the trailer of a PDF �le indirectly. At least
three primitives are foreseen:

\setpdfbox typesets its argument and stores the
result as a PDF object. The reference to
that object will stay in the internal register
accessible by \lastpdfbox.

\lastpdfbox returns the reference to the last
stored object by \setpdfbox.

\usepdfbox This primitive puts a reference to
an object into the output stream.

7 Future Work

Few claim to know what will be the preferred
electronic format a century from now,

but I'm willing to go out on a limb
and assert that it will be none of TEX,

PostScript, PDF, Microsoft Word, nor any
other format currently in existence.

Paul Ginsparg [11]

TEX2PDF is currently under development and is
available to beta testers only. We do not guaran-
tee that the input syntax will remain unchanged.
Support for object reuse, graphics and OpenType
(TrueType) fonts when the PDF speci�cation 1.2
comes out may be added.

For testing purposes, a tex2pdf option for
the hyperref package [16] will be written, using
the hypertext possibilities of TEX2PDF directly.
This will allow using TEX2PDF for re-typesetting
of LATEX documents just by loading with hyperref



248 TUGboat, Volume 17 (1996), No. 3

Program(s) Time without Time with
compression compression (LZW)

TEX2PDF (�-test version) 1:57 2:38
TEX + dvips 5.58 + Adobe Distiller 2.1 6:34 (1:33+0:18+4:43) 6:56 (1:33+0:18+5:05)
TEX + dvips 5.58 + Aladdin Ghostscript 4.0 40:23 (1:33+0:18+38:32) not applicable

Table 1: Speed comparison of several ways of producing PDF �le (tex.pdf) from a TEX �le (tex.tex)

Program(s) without LZW with LZW without compression
compression compression and PDF �le gzipped

TEX2PDF (�-test version) 8 063658 3 086545 1 906184
TEX + dvips 5.58 + Adobe Distiller 2.1 10 530967 4 387232 2 115827
TEX + dvips 5.58 + Aladdin Ghostscript 4.0 16 908552 not applicable

Table 2: Size comparison of several ways of producing PDF �le (tex.pdf) from a TEX �le (tex.tex)

package with the tex2pdf option in the document
preamble.

Support for the full usage of Multiple Master
technology remains to be added, possibly in the
combination with METAFONT [15, 13]. Extensions
of the paragraph breaking algorithm [22] to take
advantage of Multiple Master fonts with a variable
width axis (but constant grayness) to help justi�-
cation (\emergencyfontwidthstretch) is another
possible direction of future work.

Acknowledgements

The support of the TUG '96 bursary committee
is acknowledged, having allowed presentation of a
preliminary version of this paper at the TUG '96
conference in Dubna, Russia.

References

[1] Adobe. Adobe Acrobat 3.0beta. http://www.
adobe.com/acrobat/3beta/main.html, 1996.

[2] Adobe Systems. PostScript Language Reference
Manual. Addison-Wesley, Reading, MA, USA,
1985.

[3] American National Standards Institute and In-
ternational Organization for Standardization.
Information processing: Text and O�ce Sys-
tems: Standard Generalized Markup Language
(SGML). American National Standards Insti-
tute, 1430 Broadway, New York, NY 10018,
USA, 1985.

[4] Association of American Publishers. Associa-
tion of American Publishers Electronic Man-
uscript Series Standard for Electronic Man-
uscript Preparation and Markup: an SGML
Application Conforming to International Stan-
dard ISO 8879{Standard Generalized Markup
Language. Version 2.0 Dublin, Ohio: Available

from the Electronic Publishing Special Interest
Group, c1987. Association of American Pub-
lishers, Dublin, OH, USA, 1987.

[5] Tim Bienz, Richard Cohn, and James R. Mee-
han. Portable Document Format Reference
Manual, Version 1.1. Addison-Wesley, Read-
ing, MA, USA, 1996.

[6] Steven J. DeRose and David G. Durand. Mak-
ing Hypermedia Work. Kluwer Academic Pub-
lishers Group, Norwell, MA, USA, and Dor-
drecht, The Netherlands, 1994.

[7] Andrew E. Dobrowolski. Typesetting
SGML Documents using TEX. TUGboat,
12(3):409{414, December 1991.

[8] Emerge, Inc. TEX and PDF: Solving Font Prob-
lems. http://www.emrg.com/texpdf.html,
1996.

[9] David Fuchs. The Format of TEX's DVI Files.
TUGboat, 1(1):17, October 1980.

[10] David Fuchs. The Format of TEX's DVI Files.
TUGboat, 3(2):14, October 1982.

[11] Paul Ginsparg. Winners and Losers in the
Global Research Village. http://xxx.lanl.

gov/blurb/pg96unesco.html, February 1996.

[12] Charles F. Goldfarb and Yuri Rubinsky. The
SGML Handbook. Clarendon Press, Oxford,
UK, 1990.

[13] Michel Goossens, Sebastian Rahtz, and Robin
Fairbairns. Using Adobe Type 1 Multiple
Master Fonts with TEX. TUGboat, 16(3):253{
258, June 1995.

[14] Han The Thanh. Portable Document Format
and Typesetting System TEX (in Czech). Mas-
ter's thesis, Masaryk University, Brno, April
1996.



TUGboat, Volume 17 (1996), No. 3 249

[15] Yannis Haralambous. Parametrization of
Postscript Fonts through METAFONT|an Al-
ternative to Adobe Multiple Master Fonts.
Electronic Publishing, 6(3):145{157, April 1994.

[16] Yannis Haralambous and Sebastian Rahtz.
LATEX, Hypertext and PDF, or the Entry of
TEX into the World of Hypertext. TUGboat,
16(2):162{173, June 1995.

[17] Berthold K. P. Horn. Acrobat PDF from TEX.
http://www.YandY.com/pdf_from.pdf, 1996.

[18] Donald Knuth. Virtual Fonts: More Fun for
Grand Wizards. TUGboat, 11(1):13{23, April
1990.

[19] Donald E. Knuth. The TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[20] Donald E. Knuth. TEX: The Program, vol-
ume B of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986.

[21] Donald E. Knuth. The Errors of TEX.
Software{Practice and Experience, 19(7):607{
685, 1989.

[22] Donald E. Knuth and Michael F. Plass. Break-
ing Paragraphs into Lines. Software{Practice
and Experience, 11:1119{1184, 1981.

[23] Sebastian P. Q. Rahtz. Another Look at LATEX
to SGML Conversion. TUGboat, 16(3):162{173,
September 1995.

[24] T. V. Raman. An Audio View of TEX Docu-
ments. TUGboat, 13(3):372{379, October 1992.

[25] Tomas G. Rokicki. A Proposed Standard for
Specials. TUGboat, 16(4):395{401, December
1995.

[26] Philip N. Smith. Block-Base Formatting
with Encapsulated PDF. Technical Report
NOTTCS-TR-95-1, Department of Computer
Science, University of Nottingham, January
1995. http://www.ep.cs.nott.ac.uk/~pns/

pdfcorner/complete.pdf.

[27] Mike Sofka. Dvi Driver Implementation and
Standardization Issues. Available as http://

www.rpi.edu/~sofkam/DVI/dvi.html, 1996{.

[28] Kendall Whitehouse. Creating Quality
Adobe PDF Files from TEX with Dvips.
http://www.adobe.com/supportservice/

custsupport/SOLUTIONS/2d7a.htm, 1996.

� Petr Sojka, Han The Thanh, and

Ji�r�� Zlatu�ska

Faculty of Informatics

Masaryk University Brno

Bure�sova 20, 602 00 Brno

Czech Republic

Internet: sojka, thanh,

zlatuska@informatics.muni.cz



250 TUGboat, Volume 17 (1996), No. 3

%% LaTeX2e file `t.tex'

%%

\hsize 3in

\baselineskip 13pt

\pdfoutput=1 % we will produce PDF instead of DVI

\pdfannottext

open % optional specification if the text annotation is implicitly opened

{The text annotation} % the text itself

\def\BL{\pdfannotlink

depth 3pt height 8pt % optional specification for link size

1 % key of destination

border 0 0 1 % optional specification for link border

}

\def\EL{\pdfendlink}

\pdfoutline

1 % key of destination

0 % number of sub-entries of this item

{The outline entry} % Text of this item

\pdfdestxyz

1 % key of this destination

zoom 2 % optional zoom factor

%\pdfdestfit 1 or %\pdfdestfith 1 or %\pdfdestfitv 1

%\pdfdestfitr 1 ... \pdfendfitr

This is \TeX, a document compiler intended to produce typesetting of

high quality. The PASCAL program that follows is the definition of

\TeX82, a standard version of \TeX\ that is designed to be highly

portable so that identical output will be obtainable on a great

variety of computers.

The main purpose of the following program is to explain the algorithms

of \TeX\ as clearly as possible. \BL As a result, the program will not

necessarily be very efficient when a particular PASCAL compiler has

translated it into a particular machine language.\EL\ However, the

program has been written so that it can be tuned to run efficiently in

a wide variety of operating environments by making comparatively few

changes. Such flexibility is possible because the documentation that

follows is written in the WEB language, which is at a higher level

than PASCAL; the preprocessing step that converts WEB to PASCAL is

able to introduce most of the necessary refinements. Semi-automatic

translation to other languages is also feasible, because the program

below does not make extensive use of features that are peculiar to

PASCAL.

A large piece of software like \TeX\ has inherent complexity that cannot

be reduced below a certain level of difficulty, although each individual

part is fairly simple by itself. The WEB language is intended to make

the algorithms as readable as possible, by reflecting the way the

individual program pieces fit together and by providing the

cross-references that connect different parts. Detailed comments about

what is going on, and about why things were done in certain ways, have

been liberally sprinkled throughout the program. These comments explain

features of the implementation, but they rarely attempt to explain the

\TeX\ language itself, since the reader is supposed to be familiar with

{\sl The \TeX book}.

\bye

Figure 1: Example of new hypertext primitives added in the TEX2PDF source �le



TUGboat, Volume 17 (1996), No. 3 251

Figure 2: Result of TEX2PDF source in Fig. 1 viewed in Acrobat Reader


