
292 TUGboat, Volume 22 (2001), No. 4

Instant Preview and the TEX daemon

Jonathan Fine

Abstract

Instant Preview is a new package, for use with
Emacs and xdvi, that allows the user to preview
instantly the file being edited. At normal typing
speed, and on a 225MHz machine, it refreshes the
preview screen with every keystroke.

Instant Preview uses a new program, dvichop,
that allows TEX to process small files over 20 times
quicker than usual. It avoids the overhead of start-
ing TEX. This combination of TEX and dvichop is
the TEX daemon.

One instance of the TEX daemon can serve
many programs. It can make TEX available as a
callable function. It can be used as the formatting
engine of a WYSIWYG editor.

This paper will demonstrate Instant Preview,
describe its implementation, discuss its use with
LATEX, sketch the architecture of a WYSIWYG TEX,
and call for volunteers to take the project forward.

Instant Preview at present is known to run only
under GNU/Linux, and is released under the GPL.
It is available at: http://www.activetex.org.

Instant Preview

TEX is traditionally thought of as a batch program
that converts text files into typeset pages. This arti-
cle describes an add-on for TEX, that in favourable
circumstances can compile a file in a twentieth of



TUGboat, Volume 22 (2001), No. 4 293

Figure 1: Screen shot of Instant Preview.

the normal time. This allows TEX to be used in in-
teractive programs. This section describes Instant
Preview. See figure 1 for a screen-shot.

Types of users Almost all users of TEX are famil-
iar with the edit-compile-preview cycle that is part
of the customary way of using TEX. Previewing is
very useful. It helps avoid wasting paper, and it
saves time. In the early days, it could take several
seconds to compile and preview a file, and perhaps
minutes to print it. Today it takes perhaps about a
quarter of a second to compile and preview a file.

Many of today’s newcomers to computing, and
most users of WYSIWYG word processors, expect
to have instant feedback, when they are editing a
document. Users of TEX expect the same instant
feedback, when they are editing a source file in a text
editor. Because they have absorbed the meaning of
the markup codes, they can usually imagine without
difficulty the printed form of the document. They
know when the markup is right.

Beginners tend to compile the document fre-
quently, because they are uncertain, and wish to
have the positive reinforcement of success. Instant
Preview, again under favourable circumstances, can
reduce to a twentieth the time take to compile and
preview a file. This makes it practical to offer pre-

view after every keystroke. Beginners will be able
to see their failures and successes as they happen.

Experienced users do not need such a high level
of feedback, and prefer to devote the whole screen to
the document being edited. However, even experts
have the same need for positive reinforcement, when
they use a package that is new to them.

Modus operandi Here we describe three possible
ways of using Instant Preview. At the time of
writing, only the last has been implemented. We
assume that the document is in the editing stage of
its life cycle, or in other words the location of page
breaks and the like is not of interest.

The expert needs only occasionally to preview
the source document. She will select the region of
interest, and ask for it to be previewed. Instant
Preview here may provide a quick and convenient
interface, but the operation is uncommon and so
the functionality should be unobtrusive.

When doing something tricky, the user might
wish to focus on a part of the document, and for
this part have Instant Preview after every keystroke.
The tuning of math spacing in a formula is an ex-
ample. Few if any users invariably know, without
looking, what tuning should be applied to a mod-
erately complicated formula. This applies particu-
larly to displayed equations wider than the measure,



294 TUGboat, Volume 22 (2001), No. 4

multi-line equations, and commutative diagrams. It
also applies to the picture environment (for which
the special tool TEXcad was written).

For the beginner, everything is tricky, even
straight text. The beginner hardly knows that
\{}#^_%$ are all special characters, and that ‘‘
and ’’ are the way to get open and close double
quotes. Even experts, who know full well the rules
for spaces after control sequences, sometimes make
a mistake1. The absolute beginner is likely to want
Instant Preview of everything, absolutely all the
time. Later, with experience, the training wheels
can be removed.

Implementation Instant Preview has been imple-
mented using Emacs and xdvi. There seems to be
no reason why another editor and previewer should
not be used, provided the editor is sufficiently pro-
grammable, and the previewer can be told to refresh
the file it is previewing.

Instant Preview works by writing the region to
be previewed, together with suitable preamble and
postamble, to a special place. From there, the TEX
daemon picks it up, typesets it, and writes it out as
a dvi file. Once written, the previewer is told to
refresh its view of the dvi file.

The main difference between the three modes
is what is written out, and when. Absolute begin-
ner mode writes out the whole buffer, after every
keystroke. Confident expert mode writes out a se-
lected region, but only on demand.

At the time of writing (mid-June 2001), only
absolute beginner mode has been implemented. Fur-
ther progress requires above all clear goals and
Emacs programming skills.

The dvichop program

For interactive programs, speed is of the essence.
Therefore, we will look at TEX’s performance. The
author’s computer has a 225MHz Cyrix CPU. So
that we have a definite figure, we will say that on
this machine a response time of 1/10 seconds is
acceptable.

Typesetting story.tex There is a file,
story.tex, that is part of every TEX distribu-
tion. It is described in The TEXbook. On the
author’s computer, the command

time tex ./story \\end

1 In the first draft, the allegedly expert author forgot that
& is also special, and also that \verb cannot be used in a LATEX
footnote.

Mode seconds
Console, output to /dev/null .492
Console, output to screen .507
X-windows, output to /dev/null .497
X-windows, output to screen .837

Table 1: Time taken to typeset story.tex 100
times

takes .245 seconds to execute2. This seems to make
Instant Preview impossible.

However, the command

time tex \\end

takes only .240 seconds to execute. Therefore, it
takes TEX almost 1/4 of a second to load and
exit, while typesetting the two short paragraphs in
story.tex can be done about 20 times in the target
time of a tenth of a second.

Thus, provided the overhead of loading (and
exiting) TEX can be avoided, Instant Preview is
possible.

Remarks on performance The simple tests ear-
lier in this article show that it takes TEX about 0.005
seconds to typeset the file story.tex. This subsec-
tion gives a more precise result. It also show some of
the factors that can influence apparent performance.

The file 100story.tex is as below.

\def\0{\input ./story }
\def\1{\0\0\0\0\0\0\0\0\0\0}
\def\2{\1\1\1\1\1\1\1\1\1\1}
\2 \end

Table 1 gives the time taken to process this file,
in the various modes. It shows that on the author’s
machine and in the best conditions, it takes about
0.0025 ≈ (0.492 − 0.240)/100 seconds to process
story.tex once.

Note that the time taken can be quite sensitive
to the mode, particularly X-windows. We also note
that using \input story (so that kpathsea looks for
the file) adds about 0.025 seconds to the total time
taken.

Starting TEX once The solution is to start TEX
once, and use it to typeset multiple documents.
Once TEX has typeset a page, it uses the \shipout
command to write it to the dvi file. The new page
now exists on the file system, and can be used by
other programs. Actually, this is not always true.

2 To avoid the overhead of X-windows, this command was
executed in a virtual console. The same goes for the other
timing data. The input file is placed in the current directory
to reduce kpathsea overheads.



TUGboat, Volume 22 (2001), No. 4 295

To improve performance, the system dependent part
of TEX usually buffers the output dvi stream. How-
ever, this can be turned off. We assume that dvi
output is unbuffered.

Most dvi-reading applications are unable to
process such an ill-formed dvi file. For example,
most immediately seek to the end of the file, to
obtain a list of fonts used. To bridge this gap, and
thereby enable Instant Preview, the author wrote a
utility program called dvichop.

This program takes as input a dvi file, perhaps
of thousands of pages, and produces from it perhaps
thousands of tiny dvi files. The little files are the
ones that the previewer is asked to reload.

More exactly, dvichop looks for special marker
pages in the output dvi-stream produced by TEX
the program. The marker pages delimit the ma-
terial that is to be written to the small dvi files.
The marker pages also control where the output of
dvichop is to be written, and which process is to be
informed once the output page is ready.

Implementation The program dvichop is written
in the C programming language. It occupies about
800 lines of code, and calls in a header file dviop.h
to define the opcodes. A shell program texd starts
TEX and sends its dvi output to dvichop. More
exactly, TEX writes to a named pipe (a FIFO), which
is then read by dvichop.

More on performance In the abstract it is
claimed that TEX together with dvichop is over 20
times quicker that ordinary TEX, when applied to
small files. Here is some test data to support this
bold claim.

Normally, dvichop is run using a pipe. To
simplify matters, we will create the input stream as
a ordinary file. The plain input file listed below does
this. It also illustrates the interface to dvichop.

% 100chop.tex
\newcount\dvicount
\def\0{
\begingroup % begin chop marker page
\global\advance\dvicount 1
\count0\maxdimen \count1 3
\count2 \dvicount \shipout\hbox{}

\endgroup
\input ./story % typeset the story
\begingroup % end chop marker page
\count0\maxdimen \count1 4
\count2 0 \shipout\hbox{}

\endgroup
}
\def\1{\0\0\0\0\0\0\0\0\0\0}

\def\2{\1\1\1\1\1\1\1\1\1\1}

\begingroup % say hello to dvichop
\count0\maxdimen \count1 1
\count2 1 \shipout\hbox{}

\endgroup
\2 % ask dvichop to produce 100 files
\begingroup % say goodbye to dvichop
\count0\maxdimen \count1 2
\count2 0 \shipout\hbox{}

\endgroup
\end

Typesetting story.tex 100 times in the con-
ventional way takes approximately 24.5 seconds.
Running TEX on 100chop.tex takes about 0.510
seconds. This typesets the story for us 100 times.
Running dvichop on the output file 100chop.dvi
takes 0.135 seconds. Its execution creates files 1.dvi
through to 100.dvi that are for practical purposes
identical to those obtained in the conventional way.
The conventional route takes 24.5 seconds. The
dvichop route took 0.510 + 0.135 = 0.645 seconds.

This indicates that on story.tex using
dvichop is 24.5/0.635 ≈ 38 times quicker. Some
qualifying remarks are in order. In practice, using
the pipeline will add overhead, but this seems to
be less than 0.01 seconds. On the other hand, the
present version of dvichop is not optimised.

The TEX daemon

A this point we assume the reader has some basic
familiarity with client-server architecture. A server
is a program that is running more or less continually,
waiting for requests from clients. Clients can come
and go, but servers are expected to persist. An
operating system is a classic example of a server,
while an application is a client.

Thanks for the memory Normally, TEX is run
as an application or client program. It is loaded
into memory to do its job, it does its job, and
then it exits. In the mid-1980s, when the author
started using a personal computer, having more
than a megabyte of memory was uncommon. TEX is
uncomfortable on less than 512Kb of memory. Thus
running TEX as a server would consume perhaps half
of the available memory. For all but the most rabid
TEX-ophile, this is clearly not an option.

Today TEX requires perhaps 2Mb of memory,
and personal computers typically have at least 32Mb
of memory. Letting TEX remain in memory on a
more or less permanent basis, much as Emacs and
other programs remain loaded even when not used,
is clearly practical. However, even today, for most



296 TUGboat, Volume 22 (2001), No. 4

users there is probably not room to have more than
a handful of instances of TEX resident in memory.

Sockets The present implementation of Instant
Preview uses a named pipe. Sockets provide a more
reliable and flexible interface. In particular, sockets
can handle contention (requests to the same server
from several clients). Applications communicate to
the X-server provided by X-windows by means of a
socket.

Providing a socket interface to the TEX daemon
will greatly increase its usefulness. The author
hopes that by the end of the year he or someone
else will have done this.

TEX as a callable function Over the years,
many people have complained that the batch
nature of TEX makes it unsuitable for today’s new
computing world. They have wanted TEX to be a
callable function. However, to make TEX a callable
function, all that is required is a suitable wrapper,
that communicates with the TEX daemon.

At present the TEX daemon is capable of re-
turning only a dvi file. To do this, it must parse
the output dvi stream. Suppose, for example, that
the caller wants to convert the output dvi into a
bitmap, say for inclusion in an HTML page. The
present set-up would result in the dvi pages being
parsed twice. Although this is not expensive, com-
pared to starting up a whole new TEX process, it is
still far from optimal.

If the TEX daemon could be made to load page-
handling modules, then the calling function could
then ask for the bitmap conversion module to handle
the pages produced by the function call. This would
be more efficient. However, as we shall soon see,
premature optimisation can be a source of problems.

TEX forever An errant application does not bring
down the operating system. Strange keystrokes and
mouse movements do not freeze X-windows. In the
same way, applications should never be able to kill
the TEX daemon. To achieve this level of reliability
is something of a programming problem.

One thing is clear: The application cannot
be allowed to send arbitrary raw TEX to the TEX
daemon. TEX is much too sensitive. All it takes is
something like

\global\let\def\undefined

and the TEX daemon will be rendered useless.
A more subtle form of this problem is when a

client’s call to the daemon results in an unintended,
unwelcome, and not readily reversible change of

state. For example, the LATEX macro \maketitle
executes

\global\let\maketitle\relax

which is an example of such a command. (Doing this
frees tokens from TEX’s main memory. When TEX,
macros and all, is shoe-horned into 512Kb, this may
be a good idea.)

Protecting TEX TEX can be made a callable func-
tion by providing an interface to the TEX daemon.
Most applications will want an interface that is safe
to use. In other words, input syntax errors are re-
ported before they get to TEX, and it is not possible
to accidentally kill the TEX daemon. To provide
this, the interface must be well defined. For exam-
ple, the input might be an XML-document (say as
a string) together with style parameters, and the
output would be say a dvi file. Alternatively, the
input might be a pointer to an already parsed data
structure.

In the long run, this interface is probably best
implemented using compiled code, rather than TEX
macros. Once a function is used to translate source
document into TEX input, there is far less need for
developers to write complicated macros whose main
purpose is to provide users with a comfortable input
syntax. Instead, the interface function can do this.

When carried out in a systematic manner, this
will remove the problem that in general LATEX is the
only program that can understand a LATEX input
file. The same holds for other TEX macros formats,
of course. Note that Don Knuth’s WEAVE (part of his
literate programming system) is similarly compiled
code that avoids the need to write complicated TEX
macros.

Visual TEX

This article uses the term visual TEX to mean pro-
grams and other resources that allow the user to
interact with a document through a formatted rep-
resentation, typically a previewed dvi file. We use
it in preference to WYSIWYG (what you see is what
you get) for two reasons. The first is today many
documents are formatted only for screen, and never
get printed. Help files and web pages are examples
of this. The second is that even when editing a docu-
ment for print, the user may prefer a representation
that is not WYSIWYG.

In most cases the author will benefit from in-
teracting with a suitably formatted view of the un-
derlying document. The benefits of readability and
use of space that typesetting provides in print also
manifest on the screen. But to insist on WYSIWYG



TUGboat, Volume 22 (2001), No. 4 297

is to ignore the differences between the two media.
Hence our use of the term Visual TEX.

Whatever term is used, the technical problems
are much the same, which is how to enable user
interaction with the dvi file.

Richer dvi files In Visual TEX, the resulting dvi
file is a view on the underlying document. For it to
be possible to edit the document through the view,
the view must allow the access to the underlying
document. Editing changes applied to the view,
such as insertion and deletion, can then be applied
to the document.

Placing large numbers of \special commands
in the dvi file is probably the best (and perhaps
the only) way to make this work. Doing this is the
responsibility of the macro package (here taken to
include the input filter function described in the pre-
vious section). It is unlikely that any existing macro
package, used in its intended manner, will support
the generation of such enriched dvi files. The au-
thor’s Active TEX macro package[2] is designed to
allow this.

Better dvi previewers Most dvi previewers con-
vert the dvi into a graphics file, such as a bitmap.
Some retain information about the font and position
of each glyph. A text editor or word processor has
a cursor (called point in Emacs), and by moving the
cursor text can be marked. This is a basic property
of such programs. So far as the author knows, no
dvi previewer allows such marking of text.

Further reading This section is based on the au-
thor’s article [1].

The Lyx editor for LATEX adopts a visual ap-
proach to the generation of files that can be typeset
using LATEX. It does not support WYSIWYG inter-
action. Understanding the capabilities and limita-
tions of Lyx is probably a good way to learn more
about this area.

The next steps

This section discusses some of the opportunities
and problems in this general area, likely to present
themselves over the next year or two.

Applications Two areas are likely to be the focus
of development in the next year or so. The first is the
refinement of Instant Preview, as a tool for use with
existing TEX formats. Part of this is the creation of
material for interactive (La)TEX training. Instant
Preview provides an attractive showcase for the
abilities of TEX and its various macro packages.

The second is TEX as a callable function. This
is required for Visual TEX. One of the important
missing components are libraries that allow rich in-
teraction with dvi files. This will lay the foundation
for TEX being embedded in desktop applications.

Licence The work described this article is at
present released under the General Public Licence of
the Free Software Foundation (the GPL). Roughly
speaking, this means that any derived work that
contains say the author’s implementation of the TEX
daemon must also be released under the GPL.

However, the TEX daemon is the basis for TEX
as a callable function, and for good reason library
functions are usually released under the Lesser (or
Library) General Public Licence (the LGPL), or
something similar. This means that the library as
is can be linked into proprietary programs, but that
any enhancement to the library must be released
under the LGPL.

Porting TEX runs on almost all computers, and
where it runs, it gives essentially identical results.
The same applies, of course, to TEX macros. By
and large, it is desirable that the tools used with
TEX run can be made to run identically on all plat-
forms. This is not to say that the special features
of any particular platform should be ignored. Nor
is it to say that advances (such as Instant Preview
itself) should not first manifest on a more suitable
platform.

Cross-platform portability is one of the great
strengths of TEX. What is desirable is that pro-
grams that run with TEX have a similar portability.
Many people cannot freely choose their computing
platform. If TEX and friends are available every-
where, this make TEX a more attractive choice.

In the 1980s, in the early days of TEX, many
pioneers ported TEX to diverse platforms. This work
established deep roots that even today continue to
nourish the community. Although Instant Preview,
even when fully developed, is not on the same scale
as TEX, it being ported will similarly nourish the
community.

TEX macros Visual TEX requires a stable TEX
daemon, which in turn will require a macro package
(or a pre-loaded format). This new use of TEX places
new demands on the macros. Here, we include in
macros any input filter functions used to protect the
TEX daemon from errant applications.

These new demands include protection against
change of state, reporting and recovery from errors,
ability to typeset document fragments, support for
rich dvi file, and the ability for a single daemon



298 TUGboat, Volume 22 (2001), No. 4

to support round-robin processing of multiple doc-
uments. Once tools are in place, much of the input
is likely to be XML, and much of the output will be
for screen rather than paper.

The existing macros packages (such as plain,
LATEX and ConTEXT) were not written with these
new requirements in mind. Although they are useful
now, in the longer term it may be better to write a
new macro package from scratch, for use in conjunc-
tion with suitable input filters.

Summary

By running TEX within a client-server architecture,
many of the problems traditionally associated with
it are removed. At the same time, new demands are
placed on macro packages, device drivers (such as
dvichop and xdvi) and a new category of software,
input filters (such as WEAVE).

This new architecture allows Instant Preview,
and opens the door to Visual TEX. All this is
possible without making any changes to TEX the
program, other than in the system dependent part.

Don Knuth In 1990, when he told us [4] that his
work on developing TEX had come to an end, Don
Knuth went on to say:

Of course I do not claim to have found the
best solution to every problem. I simply
claim that it is a great advantage to have
a fixed point as a building block. Improved
macro packages can be added on the input
side; improved device drivers can be added
on the output side.

The work described in this article has taken its
direction from this statement. One of the most ob-
vious characteristics of today’s computer monitors
(not to be confused with the chalk monitor in class-
rooms of old) is their widespread use of colour. TEX
is clumsy with colour. TEX was not designed with
Visual TEX in mind. However, we still have our
hands full making the best of what we have with
TEX. If our labours bear fruit, then in time a place
and a need for a successor will arise.

Again, this possibility was foretold by Don
Knuth [3]:

Of course I don’t mean to imply that all prob-
lems of computational typography have been
solved. Far from it! There are still countless
important issues to be studied, relating espe-
cially to the many classes of documents that
go far beyond what I ever intended TEX to
handle.

References

[1] Jonathan Fine, Editing .dvi files, or Visual
TEX, TUGboat, 17 (3) (1996), 255–259.

[2] , Active TEX and the DOT input syntax,
TUGboat, 20 (3) (1999), 248–261

[3] Donald E. Knuth, The Errors of TEX,
Software—Practice & Experience, 19 (1989)
607–685 (reprinted in Literate Programming)

[4] , The future of TEX and METAFONT, TUG-
boat, 11 (4) (1990), 489 (reprinted in Digital Ty-
pography)

� Jonathan Fine
203 Coldhams Lane, Cambridge,

CB1 3HY, UK
jfine@activetex.org


