
TUGboat, Volume 22 (2001), No. 4 269

LATEX, SVG, Fonts

Michel Goossens and Vesa Sivunen

Abstract

After giving a short overview of SVG, pointing out
its advantages for describing in a portable way the
graphics content of electronic documents, we show
how we converted TEX font outlines (the Type 1
variant) into SVG outlines and explain how these
SVG font glyphs can be used in SVG instances of
documents typeset with TEX.

1 Introduction

The increasing affordability of the personal com-
puter drastically reduces the production cost of elec-
tronic documents. The World Wide Web makes dis-
tributing these documents worldwide cheap, easy,
and fast. Taken together, these two developments
have considerably changed the economic factors con-
trolling the generation, maintenance, and dissemi-
nation of electronic documents. More recently, the
development of the XML family of standards and the
ubiquity of the platform-independent Java language
make it possible to have a unified approach to han-
dle the huge amount of information stored electron-
ically and to transform it into various customizable
presentation forms.

Given the severe financial constraints in many
parts of the world, where it is often out of the
question to even consider printing multiple copies
of a (highly technical) document, electronic dissem-
ination via the Web is the only way to publish.
Thus, the Web is not only an additional medium for
the traditional publishing industry, but a necessary
complement in large parts of the world to partici-
pate in sharing scientific and technical information
and benefit from the wealth and progress it creates.

Various techniques are now available to trans-
form LATEX documents into PDF, HTML (XHTML),
or XML so that the information can be made avail-
able on the Web. Thus, LATEX will continue to play
a major role in the integrated worldwide cyberspace,
especially in the area of scientific documents. How-
ever, it is clear that LATEX’s greatest impact will
remain in the area of typesetting, with TEX remain-
ing an important intermediate format for generating
high-quality printable PDF output.

The present article explores ways of transform-
ing LATEX-encoded information globally into a Scal-
able Vector Graphics (SVG) format, in particular by
exploiting the use of the SVG font machinery. A fur-
ther step, to be described in a forthcoming article,
will be to transform the LATEX document into vari-

ous XML vocabularies, thus saving as much semantic
information as possible.1 Such a modular approach
makes optimal document reuse possible.

2 SVG for portable graphics on the Web

As the Web has grown in popularity and complexity,
users and content providers wanted ever better and
more precise graphical rendering, as well as dynamic
Web sites. Today, only drop shadows, rudimentary
animations, and low-resolution GIF or PNG images
are commonly used in Web pages. Moreover, that
technology is not really scalable.

The publication of the SVG Recommendation
was the result of more than two years of collabo-
rative effort by major players in the computer in-
dustry2 to find a workable cross-platform solution
to Web imaging. Version 1.0 of the SVG specifica-
tion was published as a W3C Recommendation on
4 September 2001 and it represents a genuine ad-
vance for portable graphics on the Web. The cur-
rent version of SVG is 1.1, and it became a W3C

Recommendation on 14 January 2003.3

Nowadays many software vendors support SVG

in their products, while more and more free viewing
and editing tools capable of handling SVG become
available.

SVG is an open-standard vector graphics lan-
guage for describing two-dimensional graphics using
XML syntax. It lets you produce Web pages con-
taining high-resolution computer graphics.

SVG has the usual vector graphics functions. Its
fundamental primitive is the graphics object, whose
model contains the following:
• graphics paths consisting of polylines, Bézier

curves, etc.:
– simple or compound, closed or open;
– (gradient) filled, (gradient) stroked;
– can be used for clipping;
– can be used for building common geomet-

ric shapes;
• patterns and markers;
• templates and symbol libraries;
1 For instance, the hierarchical structure of the document

is encoded in XML by using one of DocBook, TEI or, to a cer-
tain extent, XHTML, while other specific XML vocabularies
are used for their given application domain, such as MathML

for mathematics, SVG for two-dimensional graphics, CML for
chemistry, BSML for bioinformatics, GeneXML or GEML for
gene expression, and many others.

2 Among the companies represented on W3C’s SVG com-
mittee were IBM, Microsoft, Apple, Xerox, Sun Microsys-
tems, Hewlett-Packard, Netscape, Corel, Adobe, Quark, and
Macromedia.

3 Scalable Vector Graphics (SVG) 1.1 Specification, avail-
able at http://www.w3.org/TR/SVG11/.

http://www.w3.org/TR/SVG11/

270 TUGboat, Volume 22 (2001), No. 4

• transformations:
– default coordinate system: x is right, y is

down, one unit is one pixel;
– viewport maps an area in world coordi-

nates to an area on screen;
– transformations alter the coordinate sys-

tem (2×3 transformation matrix for com-
puters; translate, rotate, scale, skew for
humans);

– can be nested;
• inclusion of bitmap or raster images;
• clipping, filter and raster effects, alpha masks;
• animations, scripts, and extensions;
• groupings and styles;
• SVG fonts (independent from fonts installed on

the system).
SVG consists of Unicode text in any XML name-

space.4 The use of Unicode throughout enhances
searchability and accessibility of the SVG graphics.

SVG drawings can be dynamic and interactive.
The Document Object Model (DOM) for SVG allows
for efficient vector graphics animation via scripting,
which can be performed on SVG elements and other
XML elements from different namespaces simulta-
neously within the same Web page. Event handlers
can be assigned to any SVG graphical object.

A major source of information on SVG is the
W3C SVG site, which describes the latest develop-
ments in the area of SVG, the status of current im-
plementations. It also has a reference list of arti-
cles, books, software announcements, and pointers
to other interesting SVG sites.5

2.1 Inside an SVG document

As described earlier, the basis of SVG is a Uni-
code text document, usually identified with a file
extension .svg and a mime-type (for the server)
image/svg-xml. Thus it is rather straightforward
to create and edit SVG documents with your favorite
text editor.

The top part of Figure 1 shows a small SVG

file svgexa.svg, which is an example of the static
4 The target application must be able to interpret the

specific XML vocabulary to make this useful. A forthcoming
article will show how one can use XHTML, MathML and SVG

together.
5 The W3C SVG site is at http://www.w3.org/Graphics/

SVG/. An SVG Tutorial site is at http://www.svgtutorial.

com/. The Batik distribution (http://xml.apache.org/
batik) comes with many SVG examples, including quasi 3D
scenes, animations, complex languages, such as Arabic, etc.
The Adobe SVG site (http://www.adobe.com/svg) features
some interesting SVG files. Interactive geometry, statistical
charts, cartographic material and much more is at Michel
Pilat’s site (http://pilat.free.fr/english).

graphics possibilities of SVG. After the comment on
line 1 we declare that we work in the SVG namespace
(line 2) and define the size of the display area (line
3). We write a title (lines 5 and 6), draw a row of
four rectangles (lines 7–14), followed by a row of four
rectangles with rounded corners (lines 17–23), and
finally a row of four ellipses (lines 25–29). The ori-
gin of SVG’s x-y coordinate system is the upper left
hand side of the display area. The semantics of the
various arguments of the SVG elements should be
rather easy to guess (the SVG Specification contains
detailed definitions). Notice the similarity between
the PostScript and SVG languages.

If we want to view our file svgexa.svg we must
use an application that understands the SVG lan-
guage, such as Apache’s Batik6 or Adobe’s Browser
plugin svgview.7 W3C’s browser Amaya,8 which
provides an interesting development environment for
viewing and editing MathML and HTML code, also
supports part of SVG. The recent default distri-
butions (1.3 or later) of the Mozilla browser9 have
built-in support for presentation MathML but to be
able to interpret SVG natively you need to down-
load a special SVG-enabled executable.10 The mid-
dle row of Figure 1 represents at the left our example
file as displayed by Batik, with a zoom on part of
the graphics at its right. This shows that regions of
an image can be magnified without loss of quality
(this is because of the vector nature of SVG’s graph-
ics model).11 The bottom row of Figure 1 shows
at the left the same file as displayed by Microsoft’s
Internet Explorer using Adobe’s svgview plugin in-
stalled (left) and at the right as shown by the Amaya
browser.

3 Generating SVG instances from TEX
fonts

Many scientific documents, especially in physics and
mathematics, are marked up with LATEX. On the
other hand XML has become a lingua franca of the
Internet and XML-aware tools are becoming ubiqui-
tous. Therefore, it becomes important to integrate
LATEX and XML in an optimal way.

6 See http://xml.apache.org/batik.
7 Available from http://www.adobe.com/svg.
8 See http://www.w3.org/Amaya/.
9 See http://www.mozilla.org.

10 Details at http://www.mozilla.org/projects/svg/.
11 The Batik Squiggle SVG viewer and Adobe’s Browser

plugin svgview offer convenient ways to navigate an image.
You can zoom in and out, move in the two-dimensional plane
(in svgview hold down the Alt or in Squiggle the Shift key
and move the mouse with the left button pressed) or rotate
over a given angle.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.svgtutorial.com/
http://www.svgtutorial.com/
http://xml.apache.org/batik
http://xml.apache.org/batik
http://www.adobe.com/svg
http://pilat.free.fr/english
http://xml.apache.org/batik
http://www.adobe.com/svg
http://www.w3.org/Amaya/
http://www.mozilla.org
http://www.mozilla.org/projects/svg/

TUGboat, Volume 22 (2001), No. 4 271

1 <!-- svgexa.svg ++ A small SVG Example ++ -->
2 <svg xmlns="http://www.w3.org/2000/svg"
3 width="450pt" height="350pt">
4 <g style="stroke:black; fill:none">
5 <text x="5" y="25" style="font-size:24">
6 Exemple SVG : rectangles et ellipses</text>
7 <rect x="10" y="50" width="100" height="75"/>
8 <rect x="120" y="50" width="100" height="75"
9 style="fill:red"/>

10 <rect x="230" y="50" width="100" height="75"
11 style="stroke:lime; stroke-width:6"/>
12 <rect x="340" y="50" width="100" height="75"
13 style="stroke:blue; fill:none; stroke-width:3;
14 stroke-dasharray:10 5;stroke-linejoin:miter"/>
15 </g>

16 <g style="stroke:none; fill:blue">
17 <rect x="10" y="150" width="100" height="75" rx="40" ry="40"/>
18 <rect x="120" y="150" width="100" height="75" rx="50" ry="50"/>
19 <rect x="230" y="150" width="100" height="75" rx="60" ry="60"
20 style="stroke:lime; stroke-width:6"/>
21 <rect x="340" y="150" width="100" height="75" rx="70" ry="70"
22 style="stroke:blue; fill:none; stroke-width:3;
23 stroke-dasharray:6 3;stroke-linejoin:miter"/>
24 </g>
25 <ellipse cx="60" cy="300" rx="50" ry="40"/>
26 <ellipse cx="170" cy="300" rx="50" ry="40" style="fill:red"/>
27 <ellipse cx="280" cy="300" rx="50" ry="40"
28 style="stroke:lime; stroke-width:6"/>
29 <ellipse cx="390" cy="300" rx="50" ry="40" angle="45"/>
30 </svg>

(a) Batik Squiggle SVG viewer (b) Zooming with Batik Squiggle

(c) Microsoft Explorer (d) W3C’s Amaya

Figure 1: Browsing an SVG file

272 TUGboat, Volume 22 (2001), No. 4

SVG is a static declarative XML vocabulary; it
provides only a final-form two-dimensional represen-
tation of a graphics image.12. Thus paragraphs or
pages must be formatted by upstream application
programs (e.g., TEX, drawing tools, Java) or by in-
line escaping to scripting (in Perl, Python, Ruby,
JavaScript, etc.)

Various tools exist to translate EPS files to SVG,
e.g., Adobe’s Illustrator (commercial) or Wolf-
gang Glunz’ pstoedit13 (the SVG translator option
is shareware). For direct translation from DVI there
is Adrian Frischauf’s dvi2svg.14

The translations work quite well as long as one
uses standard fonts, such as Times, Helvetica and
Courier. However, these applications have problems
with TEX’s non-standard character font encodings.

This problem of font encoding is closely related
to the fact that SVG, being an XML language, uses
Unicode as basic character encoding. So if one wants
to go from TEX (DVI) to SVG the driver has to map
each TEX character to its Unicode code-point and
use a large corresponding SVG font that encodes all
the needed characters.15 Such a full mapping, al-
though not impossible, is far from trivial. Hence, in
coordination with Glunz, we have opted for a tem-
porary hack, where we use a special ad-hoc option
for pstoedit, where we map for each font instance
the 256 hexadecimal codes 00 to FF in the TEX font
encoding into Unicode’s “Private Use Area” (PUA)
using (hexadecimal) code positions E000 to E0FF.

3.1 Producing SVG font instances

If we want to work with Computer Modern META-
FONT sources we can use Szabó Péter’s TeXtrace
program.16 It is a collection of Unix scripts that con-
vert any TEX font into a Type 1 .pfb outline font17

that is immediately suitable for use with dvips,
pdftex, Adobe’s acroread, etc. It now also has
an option to generate SVG, but this did not directly
do what we needed. In fact, we preferred to use
TeXtrace only to generate Type 1 pfb files, and fall
back on the second approach, that we describe next.

Working from Type 1 pfa/pfb font sources it is
rather straightforward to generate the correspond-
ing SVG font. A Perl script, t1svg.pl, was devel-
oped to achieve this translation, where the only (mi-

12 This is unlike the PostScript language, which allows for
inline computations.

13 See http://www.pstoedit.net/pstoedit.
14 See http://www.activemath.org/~adrianf/dvi2svg/.
15 In fact, some mathematical TEX characters are still ab-

sent from and thus not yet encodable in Unicode 3.2.
16 See http://www.inf.bme.hu/~pts/textrace/.
17 See http://partners.adobe.com/asn/developer/pdfs/

tn/T1_SPEC.PDF for a description of the Type 1 font format.

nor) difficulty is the correct handling of the position
of the current point.18

Table 1 shows the correspondence between the
PostScript Type 1 operators (left column) and the
SVG equivalent (middle column), with the argu-
ments for each command expressed in function of
those of the corresponding Type 1 ones (a1, a2,
etc.). The right column shows the x (cx) and y
(cy) coordinates of the current point expressed in
function of the Type 1 arguments.

3.2 Disassembling Type 1 font sources

Type 1 fonts are often commercial and should not
be converted into SVG without the permission of
the rights holder. TEX fonts, however, are publicly
available. For TEX fonts that are not yet available in
Type 1 format one can use Szabó Péter’s TeXtrace
program mentioned previously. Our Perl script
needs the binary compressed pfb outline font to
be disassembled with Lee Hetherington’s and Eddie
Kohler’s t1disasm program into human-readable
form.19

3.3 The conversion script

The Perl script t1svg.pl, which converts Type 1
fonts to SVG fonts, is relatively short and simple. It
does not require any special modules and should run
with any Perl version.

t1svg.pl reads the disassembled pfb file as in-
put and translates the Type 1 operators into their
SVG equivalents according to the correspondences of
Table 1. Section A provides a detailed description
of the SVG commands used in that Table.

The example of Table 2 shows the Type 1 source
(left) and the SVG source (right) of the glyph of a
contour integral. Line 1 of the SVG instance spec-
ifies the Unicode code position of the glyph (hex-
adecimal E049, i.e, in the PUA) and its name, which
we copied from line 1 of the Type 1 source at the left
(contintegraldisplay). Line 2 of the SVG spec-
ifies the horizontal width of the glyph (555.6). It
was calculated by taking the second argument of the
hsbw operator on line 2 of the Type 1 source, i.e.,
5000 9 div, which divides 5000 by 9.20 Then, on

18 This is needed since the SVG z operator sets the current
point to the point that closes the path (after the operation),
while the Type 1 closepath operator leaves it untouched, i.e.,
the current point remains at the value it had before the call.
Therefore our Perl script has to keep track of the current
point to restore it to the correct value with respect to the
Type 1 coordinates after each z operator, at which point we
insert an absolute Moveto (M) to the required (saved) current
point coordinates before continuing.

19 See http://www.lcdf.org/ eddietwo/type/#t1utils.
20 Remember that PostScript uses reverse Polish notation,

with arguments preceding the operator to which they belong.

http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

TUGboat, Volume 22 (2001), No. 4 273

Table 1: Correspondence between Type 1 and SVG commands
Type 1 SVG Current point

a1 a2 hsbw horiz-adv-x = a2 (argument of glyph), M a1 0 cx=a1

a1 hlineto h a1 cx=cx+a1

a1 hmoveto m a1 0 cx=cx+a1

a1 a2 a3 a4 hvcurveto c a1 0 (a1+a2) a3 (a1+a2) (a3+a4) cx=cx+a1+a2,

cy=cy+a3+a4

a1 a2 rlineto l a1 a2 cx=cx+a1,

cy=cy+a2

a1 a2 rmoveto m a1 a2 cx=cx+a1,

cy=cy+a2

a1 a2 a3 a4 a5 a6 rrcurveto c a1 a2 (a1+a3) (a2+a4) (a1+a3+a5) (a2+a4+a6) cx=cx+a1+a3+a5,

cy=cy+a2+a4+a6

a1 vlineto v a1 cy=cy+a1

a2 vmoveto m 0 a1 cy=cy+a1

a1 a2 a3 a4 vhcurveto c 0 a1 a2 (a1+a3) (a2+a4) (a1+a3) cx=cx+a2+a4,

cy=cy+a1+a3

closepath z

Table 2: Type 1 and SVG sources compared

1 /contintegraldisplay {
2 56 5000 9 div hsbw
3 -2222 22 hstem -2173 94 hstem -1381 40 hstem
4 -881 40 hstem -143 94 hstem -22 22 hstem
5 0 97 vstem 195 40 vstem 694 40 vstem 790 97 vstem
6 48 -2177 rmoveto 32 2 17 22 0 25 rrcurveto
7 33 -25 16 -23 vhcurveto -24 -25 -15 -35 hvcurveto
8 -51 50 -42 61 vhcurveto 155 0 58 242 76 322 rrcurveto
9 15 61 35 154 14 62 rrcurveto 151 119 122 148 hvcurveto

10 0 76 -35 117 -132 57 rrcurveto 30 179 31 184 37 173 rrcurveto
11 22 100 44 203 49 0 rrcurveto 31 0 25 -19 4 -4 rrcurveto
12 -33 -2 -17 -22 0 -25 rrcurveto -33 25 -16 23 vhcurveto
13 24 25 15 35 hvcurveto 54 -54 39 -55 vhcurveto
14 -79 0 -55 -117 -53 -197 rrcurveto
15 -22 -81 -34 -144 -6 -25 rrcurveto
16 -15 -61 -35 -154 -14 -62 rrcurveto
17 -151 -119 -122 -148 hvcurveto
18 0 -76 35 -117 132 -57 rrcurveto
19 -42 -253 -35 -196 -30 -123 rrcurveto
20 -18 -74 -46 -193 -82 0 rrcurveto -36 -25 23 0 hvcurveto
21 closepath
22 320 857 rmoveto -79 37 -54 80 0 92 rrcurveto
23 0 113 84 109 137 8 rrcurveto
24 closepath
25 104 -21 rmoveto 78 -35 56 -80 0 -94 rrcurveto
26 0 -113 -84 -109 -137 -8 rrcurveto
27 closepath
28 endchar
29 }

1 <glyph unicode="" glyph-name="contintegraldisplay"
2 horiz-adv-x="555.6">
3 <path style="fill:#000000; fill-rule=evenodd; stroke:none"
4 d="M 56 0
5 m 48 -2177
6 c 32 2 49 24 49 49
7 c 0 33 -25 49 -48 49 c -24 0 -49 -15 -49 -50
8 c 0 -51 50 -93 111 -93 c 155 0 213 242 289 564
9 c 15 61 50 215 64 277 c 151 0 270 122 270 270

10 c 0 76 -35 193 -167 250 c 30 179 61 363 98 536
11 c 22 100 66 303 115 303 c 31 0 56 -19 60 -23
12 c -33 -2 -50 -24 -50 -49 c 0 -33 25 -49 48 -49
13 c 24 0 49 15 49 50 c 0 54 -54 93 -109 93
14 c -79 0 -134 -117 -187 -314
15 c -22 -81 -56 -225 -62 -250
16 c -15 -61 -50 -215 -64 -277
17 c -151 0 -270 -122 -270 -270
18 c 0 -76 35 -193 167 -250
19 c -42 -253 -77 -449 -107 -572
20 c -18 -74 -64 -267 -146 -267 c -36 0 -61 23 -61 23
21 z
22 M 104 -2177 m 320 857 c -79 37 -133 117 -133 209
23 c 0 113 84 222 221 230
24 z
25 M 512 -881 m 104 -21 c 78 -35 134 -115 134 -209
26 c 0 -113 -84 -222 -221 -230
27 z"
28 />
29 </glyph>

line 4 of the SVG we have an absolute move (M 56
0), which corresponds to the first argument of the
hsbw operator on line 2 of the Type 1 source. We
ignore all of hints in the Type 1 source (lines 3 to
5) and continue with the rmoveto operator and its
two arguments (line 6) which we find back in the
SVG instance on line 5. We leave it as an exercise
to the reader to walk through the remaining lines of
the Type 1 source and verify, referring to Table 1 as
necessary, that you indeed obtain the result shown

at the right. Note in particular how we have to re-
set the current point after each SVG z operator (i.e.,
the absolute move M on lines 22 and 25) to where it
was before the z operator was executed.

Figure 2 shows the contour integral as viewed
with ghostview (the PostScript Type 1 image) and
with Batik (rendering the calculated SVG instance).

Rather than use the temporary hack to map the
TEX code positions into the Unicode PUA it might

274 TUGboat, Volume 22 (2001), No. 4

Figure 2: PostScript Type 1 and SVG rendering

be useful to map the TEX characters to their cor-
rect position in the Unicode character space to ob-
tain a large Unicode-encoded font. This would allow
other applications to use the available glyphs, but a
straightforward translation from a DVI file would
become impossible since TEX codes are hardwired
in such a file.

4 Transforming a LATEX document into an
SVG document

Note that SVG fonts are not needed if one is content
with having the complete EPS figure, including the
text, translated into SVG as pure paths descriptors
(the text characters are treated merely as graph-
ics paths). Use pstoedit’s -dt option in that case.
This allows for fast rendering but loses the structural
information about the graphics, making it more dif-
ficult to update. Moreover, when zooming, the qual-
ity of the rendering with SVG fonts (left part of Fig-
ure 3) is much better than when the TEX characters
are simply translated into SVG paths (right part of
Figure 3, where it is seen that the letters of the text
are much coarser than at the left).

4.1 Using pstoedit

When using pstoedit to generate SVG from
a PostScript source one needs to include the
SVG font instances of the character glyphs refer-
enced. For this we developed an XSLT stylesheet
ins-saxon6.xsl.21 In the following example we

21 Versions of the stylesheet are available for Microsoft’s
msxsl (part of their MSDN XML Developer Center http://

msdn.microsoft.com/library/) and for the Saxon (http://
saxon.sourceforge.net/) and Xalan (http://xml.apache.
org/xalan-j) Java XSLT processors.

Figure 3: LATEX text rendered with SVG fonts or
as graphics paths

Figure 4: Feynman diagrams and their
propagators

transform the PostScript input file in.ps into the
corresponding SVG instance out.svg. Since the
latter file does not include the SVG source of the
fonts we need to include these by transforming it
with the help of an XSLT stylesheet to finally obtain
out1.svg, which we can view with an SVG capable
browser.
pstoedit -f svg:-texmode -nfr in.ps out.svg

saxon6.sh out.svg ~/www/svg/ins-saxon6.xsl out1.svg

Figure 4 shows a series of Feynman diagrams.
The graphics at the left are generated with the help

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j

TUGboat, Volume 22 (2001), No. 4 275

of PostScript commands interfaced to LATEX, the
right part shows their corresponding propagators
and are prepared as LATEX math. The source is run
through LATEX, turned into PostScript with dvips,
before translating it into SVG with pstoedit. Af-
ter including the SVG fonts with the XSLT script
we display the result with Batik (top) and with Mi-
crosoft Internet Explorer and the Adobe svgview
plugin (bottom).

4.2 Using dvi2svg

We interfaced the dvi2svg Java library via a small
Unix script dvi2svg.sh, whose use is as follows:
> dvi2svg.sh

Usage: dvi2svg.sh [options] [DVIFILE]
Options:
-o [FILENAME] : Specify an output filename prefix. If not

set, dvi2svg will take the input filename.
-d : set the debug mode to on(1)/off(0 default)

An example of the use of the dvi2svg program
is the translation of the font table of the American
Mathematical Society font msbm10 from the DVI for-
mat into SVG. In contrast to pstoedit, the dvi2svg
program includes itself the SVG font outlines for
the needed characters (font sub-setting is used). It
is however impossible to deal with non-TEX mate-
rial, such as EPS or PDF graphics, in which case
pstoedit should be used.

Below we first generate the DVI file using the
fonttable utility nfssfont.tex that comes with the
LATEX distribution. Then we run dvi2svg.sh on
the generated nfssfont.dvi DVI file and obtain the
SVG file msbm1.svg.
> latex nfssfont
This is TeX, Version 3.14159 (Web2C 7.3.7x)
(/TeXlive/tl7/texmf/tex/latex/base/nfssfont.tex
LaTeX2e <2001/06/01>
...
**
* NFSS font test program version <v2.0e>
*
* Follow the instructions
**
Name of the font to test = msbm10
Now type a test command (\help for help):)
*\table
*\bye

[1]
Output written on nfssfont.dvi (1 page, 5940 bytes).
> dvi2svg.sh nfssfont.dvi -o msbm
DEBUG from converter.DviToSvg => Converting file: nfssfont.dvi
DEBUG from converter.DviToSvg => Writing result to: msbm
DEBUG from converter.DviToSvg => Reader has been created
DEBUG from converter.DviToSvg => Writer has been created
ConvertingFINISHED
> ls -l msbm*.svg
-rw-rw-r-- 1 goossens 161252 Jan 2 10:08 msbm1.svg

Figure 5 shows in its bottom part the font table
of the font msbm10 as viewed with xdvi, while its
top part shows the SVG rendering with Batik of the
SVG file msbm1.svg prepared with dvi2svg from the
original DVI file, as shown above.

Figure 5: TEX’s msbm10 font table

4.3 More complex examples

Figure 6 displays the result of translating LATEX
text and a complex use of its picture environment
into SVG in various ways. At the left we show the
file as viewed with dvips (PostScript version), in
the middle the SVG file created with the pstoedit
program from the PostScript output, at the right the
SVG file as generated directly from the DVI file with
dvi2svg. Both SVG files were displayed with the
help of Microsoft’s Internet Explorer (with Adobe’s
svgview plugin). Figure 7 shows part of the SVG

source file that was generated by dvi2svg. We shall
study its basic structure later (see Section B.2).

We also looked at LATEX sources that use non-
standard fonts, such as the MusiXTEX and XY-pic
packages. We first generated the SVG instances for
the Type 1 versions of the needed fonts and then
selected a few examples22 that are typical for these
packages. For completeness we also include exam-
ples of chemistry and algebra. We generated the

22 We took our inspiration from chapters 5 “The XY-pic
package” and 7 “Preparing music scores” of The LATEX
Graphics Companion, Illustrating Documents with TEX and
PostScript, by Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach, Addison-Wesley, 1997, ISBN 0201854694.

276 TUGboat, Volume 22 (2001), No. 4

Figure 6: LATEX and its picture environment: PostScript and SVG renderings

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <!--This file was automatically generated by dvi2svg-->
3 <svg width="504" height="800" viewBox="0 0 504 800">
4 <defs>
5
6 <font-face font-family="CMR"/>
7 <glyph unicode="" glyph-name="D"
8 horiz-adv-x="763.9">
9 <path style="fill:#000000; fill-rule=evenodd; stroke:none"

10 d="..."/>
11 </glyph>
12 <glyph unicode="" glyph-name="r"
13 horiz-adv-x="391.7">
14 <path style="..." d="..."/>
15 </glyph>
16 ...
17
18
19 <font-face font-family="LCIRCLEW"/>
20 <glyph unicode="" glyph-name="a8"
21 horiz-adv-x="1200">

22 <path style="..." d="...’’/>
23 </glyph>
24 ...
25
26 <font-face font-family="LCIRCLE"/>...
27 <font-face font-family="LINEW"/>...
28 <font-face font-family="LINE"/>...
29 <font-face font-family="CMBX"/>...
30 <font-face font-family="CMSY"/>...
31 <font-face font-family="CMMI"/>...
32 </defs>
33 <g>
34 <text fill="black" font-family="CMR" font-size="11.7871">
35 <tspan y="101.88267" x="...">...</tspan>
36 </text>
37 <rect x="322.78577" y="145.65428" width="0.872714"
38 height="0.26910424" fill="black" stroke="black"
39 stroke-width="0.1"/>
40 ...
41 </g>
42 </svg>

Figure 7: LATEX and its picture environment: Generated SVG instance

TUGboat, Volume 22 (2001), No. 4 277

Figure 8: SVG instance of a MusiXTEX example
viewed with Batik Squiggle

SVG from the DVI files as follows (we show only one
run, the others are similar).
dvi2svg.sh xytest.dvi

DEBUG from converter.DviToSvg => Converting file: xytest.dvi
DEBUG from converter.DviToSvg => Writing result to: xytest
DEBUG from converter.DviToSvg => Reader has been created
DEBUG from converter.DviToSvg => Writer has been created

Converting

We display the resulting SVG files with Batik’s
Squiggle SVG viewer. Figure 8 corresponds to exam-
ple 7–2–5 of The LATEX Graphics Companion. It rep-
resents a moderately complex part of a music piece
typeset with MusiXTEX. Figure 9 is the structural
formula of adonitoxin as typeset with the XΥMTEX
package (see page 221 of the same book). XΥMTEX is
an advanced application based on LATEX’s picture
environment. Figure 10 which combines complex
mathematical formulae with a graphical representa-
tion of a Dynkin diagram generated with the help of
the picture environment, is based on an entry in a
dictionary of Lie superalgebras.23

Figure 11 shows complex examples from the
“Links and knots” Section 5.5.8 of The LATEX Graph-
ics Companion. In particular the display is an en-
larged view of the bottom parts of examples 5–5–28
and 5–5–29, as well as of examples 5–5–34 and 5–5–
35. The display shows that SVG can be nicely scaled
for better viewing and is thus a perfect complement
for PDF output.

5 Conclusion

We have explained how SVG is a truly scalable two-
dimensional XML-based graphics language for the
Web. Since graphics representations are at the heart
of many scientific, technical and other documents,

23 The example is taken from the tables in the Appendix of
Dictionary On Lie Algebras And Superalgebras by Luc Frap-
pat, Antonino Sciarrino, and Paul Sorba, Harcourt Publishers
2000, ISBN 0122653408.

Figure 9: SVG instance of a XΥMTEX example
viewed with Batik Squiggle

Figure 10: SVG instance of math and a graph
viewed with Batik Squiggle

we are convinced that most applications will be able
to generate in the foreseeable future SVG output
from input data marked up in their specific vocab-
ularies. Similarly, with the help of the Computer
Modern family (and other) SVG font sets, which we
have explained how to generate, it is now possible to

278 TUGboat, Volume 22 (2001), No. 4

Figure 11: XY-pic example viewed with Batik Squiggle

transform complete LATEX documents into SVG. Al-
though this may prove useful in itself, the existence
of PDF and its use inside browsers on the Web makes
SVG somewhat redundant in this respect.

However, the more important use of SVG with
LATEX will be to translate the graphics images con-
tained in a LATEX document or parts of single pages
of LATEX documents from EPS, etc. into SVG so that
they can be included in XML instances generated
from LATEX sources with the help of LATEX to XML

converters, such as tex4ht.24 This will become ex-
tremely useful once the major browsers are able to
handle XML namespaces, making it possible to com-
bine different XML vocabularies. We look forward
to the not too distant future when we will be able
to generate and edit XHTML (DocBook), MathML

24 See http://www.cis.ohio-state.edu/~gurari/TeX4ht

and references therein.

and SVG directly and have the result displayed cor-
rectly.25

6 Acknowledgments and distribution

One of us (VS) would like to acknowledge the fund-
ing of a fellowship to work at CERN that he received
from the “Tools for Innovative Publishing in Sci-
ence” (TIPS) Project, part of the Information Soci-
ety Technologies Programme of the 5th Framework
of the European Union.26

The latest version of the utilities developed for
this project is available as a ZIP file on the Web.27

The fonts also come with the dvi2svg distribution.

25 See http://www.w3.org/TR/XHTMLplusMathMLplusSVG/

for some work that is been done in this area.
26 See http://www.cordis.lu/ist/ist-fp5.html.
27 See http://home.cern.ch/goossens/svgfonts.html.

http://www.cordis.lu/ist/ist-fp5.html
http://home.cern.ch/goossens/svgfonts.html

TUGboat, Volume 22 (2001), No. 4 279

A SVG graphics path commands

Paths (defined in SVG using the path element)
specify the geometry of the outline of an ob-
ject. Path operators can set the current point
(moveto), draw a straight line (lineto), draw a cu-
bic Bézier curve (curveto), and close the current
shape (closepath). Details on a subset of the SVG

path commands that are used in SVG fonts follow.
Command names in lowercase are for relative coor-
dinates, uppercase names for absolute coordinates.
[m|M] (x y)+

Start a new sub-path at the given (x,y) co-
ordinate. A relative moveto (m) appearing as
the first element of a path is treated as a pair
of absolute coordinates. If a moveto is followed
by multiple pairs of coordinates, the subsequent
pairs are treated as implicit lineto commands.

[z|Z]
Closes the current subpath by drawing a straight
line from the current point to the current sub-
path’s initial point.28

The various lineto commands draw straight
lines from the current point to a new point:
[l|L] (x y)+

Draws a line from the current point to the given
(x,y) coordinate which becomes the new cur-
rent point. A number of coordinate pairs may
be specified to draw a polyline. At the end of
the command, the new current point is set to
the final coordinate provided.

[h|H] x+
Draws a horizontal line from the current point
(cpx,cpy) to (x,cpy), which becomes the new
current point.

[v|V] y+
Draws a vertical line from the current point
(cpx,cpy) to (cpx,y), which becomes the new
current point.
There are three groups of commands to draw

curves. Here we only look at one of the cubic Bézier
commands, since it is used in the translation of the
Type 1 fonts. Further information on the other com-
mands are in the SVG Specification.
[c|C] (x1 y1 x2 y2 x y)+

Draws a cubic Bézier curve from the current
point to (x,y) using (x1,y1) as the control
point at the beginning of the curve and (x2,y2)

28 At the end of the command, the new current point is
set to the initial point of the current subpath, so that if a
closepath is followed immediately by any other command,
then the next subpath and the current subpath share their
same initial point.

as the control point at the end of the curve.
Multiple sets of coordinates may be specified to
draw a polybézier. The new current point is set
to the final (x,y) coordinate pair used in the
polybézier.

B SVG Fonts

Graphics designers creating SVG content using arbi-
trary fonts need to be sure that the same graphical
result will be displayed when the content is viewed
by all end users, even those who do not have the nec-
essary fonts installed on their computers. Therefore,
to guarantee reliable font delivery the SVG Specifi-
cation defines a common “SVG font” format that all
conforming SVG viewers must support.

B.1 Overview

SVG fonts contain unhinted font outlines. Because
of this, on many implementations there will be lim-
itations regarding the quality and legibility of text
in small font sizes. For increased quality and legibil-
ity in small font sizes, or for faster delivery of Web
pages (SVG fonts are expressed using SVG elements
and attributes, so that they can be quite verbose
compared to other formats) alternate font technol-
ogy might be considered on some systems.29

SVG fonts and their associated glyphs do not
specify bounding box information, so that it is up
to the applications to calculate bounding box and
overhang based on an analysis of the graphics ele-
ments contained within the glyph outlines.

B.2 The font element

An SVG font is defined using a font element.30 The
characteristics and attributes of SVG fonts follow
closely the font model of the Cascading Style Sheets
(CSS) level 2 Specification.31

29 The authors of the SVG Specification have realized that
the absence of a hinting mechanism in the font format of
current SVG 1.1 is a drawback. Indeed, Web developers em-
bed fonts in other formats in their SVG documents in situ-
ations where the available resolution is insufficient for ade-
quate rendering in native SVG. Therefore, SVG 1.2 (http:
//www.w3.org/TR/SVG12) plans to add hinting as an optional
feature for SVG fonts, thus offering Web authors the choice
of a pure SVG solution. The adopted approach is likely to be
based on a free variant of PostScript Type 1 hinting.

30 See http://www.w3.org/TR/SVG/fonts.html.
31 See http://www.w3.org/TR/REC-CSS2/fonts.html. In

that document font metrics are expressed in units that are
relative to an abstract square whose height is the intended dis-
tance between lines of type in the same type size. This square
is called the em square and it is the design grid on which the
glyph outlines are defined. The value of the units-per-em

attribute on the font element specifies how many units the
em square is divided into. Common values are 1000 (Type 1)
and 2048 (TrueType or OpenType).

http://www.w3.org/TR/SVG12
http://www.w3.org/TR/SVG12
http://www.w3.org/TR/SVG/fonts.html

280 TUGboat, Volume 22 (2001), No. 4

An font element can contain the following el-
ements: font-face32 (provides further typographic
information about the font, including the name of
the font), hkern and vkern (kerning information be-
tween Unicode characters), missing-glyph (defines
the representation to be used for all Unicode char-
acters that have no explicit glyph element defining
their outline in the present font), and finally glyph.

The glyph element defines the graphics for a
given glyph. The coordinate system for the glyph
is defined by the various attributes in the font el-
ement. The graphics that make up the glyph can
be either a single path data specification within the
d attribute (see below) or arbitrary SVG as content
within the glyph element.

Important attributes of the glyph element are
described below.

unicode = "<string>"
If a single character is provided, then this glyph
corresponds to the given Unicode character. If
multiple characters are provided (e.g., for liga-
tures) then this glyph corresponds to the given
sequence of Unicode characters. For example
see line 1 of Table 2 and lines 7, 12, and 20 of
Figure 7.

glyph-name = <name> [,<name>]*
A glyph name should be unique within a font.
Glyph names are used when Unicode character
numbers do not provide sufficient information
to access the correct glyph (e.g., when there are
multiple glyphs per Unicode character). Glyph
names are referenced in kerning definitions. For
example see line 1 of Table 2 and lines 7, 12, and
20 of Figure 7.

d = "path data"
Definition of the outline of a glyph. Uses the
same syntax as the d attribute on a path ele-
ment, which is often used instead. For example
see lines 4–27 of Table 2 or lines 10, 14, 22 of
Figure 7.

horiz-adv-x = "<number>"
The default horizontal advance after rendering
a glyph in horizontal orientation. Glyph widths
must be non-negative, even if the glyph is ren-
dered right-to-left, as in Hebrew and Arabic
scripts. An attribute horiz-adv-y exists for
specifying the vertical advance for glyphs ren-
dered in vertical orientation. For example see
line 2 of Table 2 and lines 8, 13, and 21 of Fig-
ure 7.

32 Similar to CSS2’s @font-face font descriptor, see
http://www.w3.org/TR/REC-CSS2/fonts.html.

For increasing portability it is advisable to em-
bed all SVG fonts that are referenced inside an SVG

document. As an example, Figure 7 shows how all
the fonts needed to render the given SVG graphics
image are first included (inside a defs element, lines
4 to 32) and later referenced (e.g., line 34 calls for
a character of font CMR whose definition is on lines
5–17).

On the other hand, it is also possible, e.g., for
convenience, to save SVG font sources in external
files and reference characters in these fonts via CSS

style directives from inside SVG images. In this case
one must, however, make sure that the needed fonts
are installed on the client’s system or are shipped
together with the referencing SVG file to the client
site.

� Michel Goossens
IT Division, CERN
CH1211 Geneva 23, Switzerland
michel.goossens@cern.ch

� Vesa Sivunen
ETT Division, CERN
CH1211 Geneva 23, Switzerland
vesa.sivunen@cern.ch

	Introduction
	SVG for portable graphics on the Web
	Inside an SVG document
	Generating SVG instances from TeX fonts
	Producing SVG font instances
	Disassembling Type 1 font sources
	The conversion script

	Transforming a LaTeX document into an SVG document
	Using pstoedit
	Using dvi2svg
	More complex examples

	Conclusion
	Acknowledgments and distribution
	SVG graphics path commands
	SVG Fonts
	Overview
	The font element

