
208 TUGboat, Volume 31 (2010), No. 3

Generate TEX documents using pdfscript

Oleg Parashchenko

Abstract

Generation of correct TEX files is actually a hard
task with a number of peculiarities. Therefore, it is
better to delegate this task to some library or tool.
A tool already exists (TEXML); now it’s time for a
library.

The library pdfscript helps to create TEX files
from Python. The API follows the LATEX model: it
represents environments, commands and their pa-
rameters as calls of the corresponding functions in
the library.

The pdfscript interface can be used as a ba-
sis for object-oriented abstractions of document ele-
ments, so that the users may create PDF documents
having no idea that TEX is inside.

1 Introduction

Automatic generation of TEX files is much harder
than one might expect. Here are some cases where
bugs are possible and attention is required:
• Special symbols should be escaped
• Non-latin letters should be handled
• A space after command names may be required:
\it text , not \ittext

• An empty group after a command may be re-
quired: \PDF{} file, not \PDF file

• Opening and closing curly braces should be bal-
anced

• It is necessary to comment-out empty lines to
avoid false paragraph breaks (and do you know
for sure what an empty line is?)
It is easy to code all these requirements, but at

the next level, when we have several different TEX-
generating programs, we would like to put the code
into a common library. I tried it and found that
this is a challenging task, which required a lot of
thinking and several attempts before the result was
satisfactory.

To compare the result with existing approaches,
I asked about related work in the newsgroup comp.
text.tex [3]. Surprisingly, the only alternatives
are the use of the “print” statements and templates.
When a programmer generates TEX files, he surely
develops some helper functions, but so far nobody
has shared his experiences, or at least I failed to find
such work.

In this article, I describe my steps in designing
a TEX generation library named pdfscript. Then
I use the library to re-typeset an excerpt from “Es-
sential LATEX” by Jon Warbrick [5] and show the

artifacts of refactoring the code. Finally, I make a
summary of the pdfscript API and speculate on
further development.

The “proof of the concept” implementation of the
pdfscript library and the examples from this article
are available from http://uucode.com/download/
pdfscript-article-examples-20100909.tar.gz.
Despite its experimental status, the code is ready for
use by early adopters.

2 Designing the interface

This section describes the steps of the design process.

2.1 Sample TEX document

Let’s start with a very simple document, which con-
tains only a setup, a title and a few paragraphs. (For
editorial reasons, the boilerplate text is corrupted by
introducing line breaks.)
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\begin{document}
\section{De finibus bonorum et malorum}
Lorem ipsum dolor sit amet, consetetur sad
ips cing elitr, sed diam nonumy eirmod tem
por invidunt ut labore et dolore...

Duis autem vel eum iriure dolor in hendrer
it in vulputate velit esse molestie conseq
uat, vel illum dolore eu feugiat...

Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit loborti
s nisl ut aliquip ex ea commodo...
\end{document}

2.2 TEXML version

The first step in the search for an API was to create
a TEXML representation. To learn TEXML, visit
the homepage of the project— http://getfo.org/
texml—or read my TUGboat article [4]. For the
purposes of this paper, it is enough to know the
basics:

• TEXML is an XML format
• The root element is named TeXML
• A TEX command is represented by an element
cmd with the attribute name:
\command[options]{parameter}

≡
<cmd name="command">

<opt>options</opt>
<parm>parameter</parm>

</cmd>

Oleg Parashchenko

comp.text.tex
comp.text.tex
http://uucode.com/download/pdfscript-article-examples-20100909.tar.gz
http://uucode.com/download/pdfscript-article-examples-20100909.tar.gz
http://getfo.org/texml
http://getfo.org/texml


TUGboat, Volume 31 (2010), No. 3 209

• If a command or an environment has options or
parameters, they are represented by elements
opt and parm, as in the example above.

• An environment is represented by an element
env with the attribute name:
\begin{itemize}
...
\end{itemize}
≡
<env name="itemize">

...
</env>
This knowledge is enough to rewrite the sample

document in the TEXML format:
<TeXML>

<cmd name="documentclass">
<opt>a4paper</opt><parm>article</parm>

</cmd>
<cmd name="usepackage">

<opt>utf8</opt><parm>inputenc</parm>
</cmd>
<cmd name="usepackage">

<opt>T1</opt><parm>fontenc</parm>
</cmd>
<env name="document">

<cmd name="section">
<parm>De finibus bonorum et..</parm>

</cmd>
<TeXML>Lorem ipsum dolor sit amet, con

setetur sadipscing elitr, sed diam n
onumy eirmod tempor invidunt ut l...

</TeXML>
<cmd name="par"/>
<TeXML>Duis autem vel eum iriure dolor

in hendrerit in vulputate velit esse
molestie consequat, vel illum dol...

</TeXML>
<cmd name="par"/>
<TeXML>Ut wisi enim ad minim veniam, q

uis nostrud exerci tation ullamcorpe
r suscipit lobortis nisl ut aliip...

</TeXML>
</env>

</TeXML>
The rewriting process is mostly straightforward,

but two points require additional comments.
First, the use of the element TeXML not only

as the root, but also as a container for the text.
It is needed here only to satisfy my XML-related
experience, which recommends avoiding mixing text
and elements without a reason.

Second, in the TEX version, the empty lines give
implicit \par commands, while TEXML version uses

par directly. It is possible to generate empty lines,
but this is bad style when using TEXML. And by the
way, I dislike the version with par too. In my docu-
ments I prefer to wrap paragraphs to environments
and hide \par in the environment definitions.

2.3 Direct Python counterpart of the
TEXML version

The TEXML version has structured the document,
and now it is easy to re-write it in Python:
import pdfscript
from pdfscript import opt, parm
doc = pdfscript.newdoc()
doc.cmd(’documentclass’,

opt(’a4paper’), parm(’article’))
doc.cmd(’usepackage’,

opt(’utf8’), parm(’inputenc’))
doc.cmd(’usepackage’,

opt(’T1’), parm(’fontenc’))
indoc = doc.env(’document’)
indoc.cmd(’section’,

parm(’De finibus bonorum et malorum’))
indoc.text(’Lorem ipsum dolor sit amet, co

nsetetur sadipscing elitr, sed diam...’)
indoc.cmd(’par’)
indoc.text(’Duis autem vel eum iriure dolo

r in hendrerit in vulputate velit e...’)
indoc.cmd(’par’)
indoc.text(’Ut wisi enim ad minim veniam,

quis nostrud exerci tation ullamcor...’)
h = open(’30_direct.texml’, ’w’)
doc.get_root().writexml(h)
h.close()

The first line instructs Python to load the library
pdfscript, the second line allows using the short
names opt and parm instead of the fully qualified
pdfscript.opt and pdfscript.parm.

Then we create a document and put the com-
mands and the environment into it. The content of
the article is put inside the environment document
by attaching the commands to the variable indoc,
which is associated with the environment.

Finally, we get the root node of the constructed
XML document and save it into the file.

2.4 Improved Python code

Immediate exprerience with the code above suggests
the following improvements:

• In the most cases, the arguments of cmd are
the parameters for the command, therefore it is
logical to make parm calls implicit.

• Instead of cmd(’name’, ...) or env(’name’,
...), the alias name(’...’) looks better.

Generate TEX documents using pdfscript



210 TUGboat, Volume 31 (2010), No. 3

• The functions could accept more than one argu-
ment.
Implementing these ideas, we get the following

Python code:
import pdfscript
from pdfscript import opt, par
doc = pdfscript.newdoc()
doc.documentclass(opt(’a4paper’), ’article’)
doc.usepackage(opt(’utf8’), ’inputenc’)
doc.usepackage(opt(’T1’), ’fontenc’)
indoc = doc.document()
indoc.section(’De finibus bonorum et ...’)
indoc.add(’Lorem ipsum dolor sit amet, con

setetur sadipscing elitr, se...’, par())
indoc.add(’Duis autem vel eum iriure dolor

in hendrerit in vulputate ve...’, par())
indoc.text(’Ut wisi enim ad minim veniam,

quis nostrud exerci tation u...’, par())
h = open(’50_final.texml’, ’w’)
doc.get_root().writexml(h)
h.close()

3 Observations on a real world example

To test if the pdfscript library is powerful enough,
I tried to reproduce some real life LATEX with it.
After wandering in the doc directory on CTAN, I
decided to re-typeset the document “Essential LATEX”
[5]. Surprisingly, the task was challenging. Even
though the LATEX code contained little markup, it
was enough to clutter the Python counterpart. To
introduce clarity to the code, a redesign was required.

After some thought, the definition of the notion
“clarity” became ambitious: a programmer who has
never heard of LATEX should understand each line of
the code. This approach produced a few artifacts:
• Python document classes
• Python macros
• Python active strings

3.1 Python Document Class

Let’s consider the high-level structure of the “Lorem
ipsum” example:
10 doc = pdfscript.newdoc()
20 doc.documentclass(...)
30 doc.usepackage(...)
40 doc.usepackage(...)
50 indoc = doc.document()
60 indoc.section(...)
70 indoc.add(..., par())
80 indoc.add(..., par())
90 indoc.text(...)

Let me turn into a non-LATEX programmer and
read this code. Here would be my comments:

(10) Ok, create a new default document. (Wrong!)
(20) This line probably defines the layout and for-

matting of the document I’m going to create.
Why not join (10) and (20)?

(30), (40) Some formatting plugins are loaded. WTF
([2])? What is T1? Do I really need these lines?
I do a “Lorem ipsum” example, not something
special. If this trivial test requires some func-
tionality, it should be automatically loaded by
default.

(50) WTF? I’ve already created the document, why
create it once more?

(60) Good, a section is created. The argument is
the title.

(70) Looks like a paragraph is created. But what is
this par() inside add()? Is it an additional ver-
tical space to separate paragraphs, like pressing
<ENTER> twice in OpenOffice or Word?

(70), (80) Stylistic note. The paragraphs should be-
long to sections, not to the document itself.
Having these remarks in mind, I recoded the

high-level structure in this way:
doc = esla.doc()
sect = doc.section(...)
sect.para(...)
sect.para(...)
sect.para(...)

The only question about this re-worked code
fragment is what does esla in the first line mean. A
programmer can guess that it is some Python pack-
age which assists in creation of the documents and
hides the formatting in the commands section()
and para(). Correct. For a LATEX user, this package
is a Python version of a document class or a pack-
age. The name esla is an abbreviation for “Essential
LATEX”—I’m leaving “Lorem ipsum” test and starting
work on the challenging example.

3.2 Python macros

After the high-level structure is improved, time to
switch to the inline markup. Here is a fragment of
the source code:
You then get \LaTeX{} to process the file,
and it creates a new file of typesetting c
ommands; this has the same name as your fi
le but the ‘‘\fn{.TEX}’’ ending is replace
d by ‘‘\fn{.DVI}’’. This stands for ‘{\it
D\/}e{\it v\/}ice {\it I\/}ndependent’ ...

The direct transcription is a nightmare:
sect.para(
’...You then get ’,
cmd(’LaTeX’),

Oleg Parashchenko



TUGboat, Volume 31 (2010), No. 3 211

’ to process the file, and it creates a
new file of typesetting commands; this
has the same name as your file but the’,

verbatim(’ ‘‘’),
cmd(’fn’, ’.TEX’),
verbatim("’’"),
’ ending is replaced by ’,
verbatim(’‘‘’),
cmd(’fn’, ’.DVI’),
verbatim("’’"),
’. This stands for ‘’,
group(cmd(’it’), ’D’, verbatim(’\/’)),
’e’,
group(cmd(’it’), ’v’, verbatim(’\/’)),
’ice ’,
group(cmd(’it’), ’I’, verbatim(’\/’)),
"ndependent’ ...")

Switching back to code review mode:
• The command LaTeX probably produces the

logo.
• The lines with fn and it produce some format-

ting. But why is the usage different? fn has an
argument, and it is enclosed in a group.

• Well, I think it switches to another formatting
forever and the group limits this forever. But
the construction \/ makes no sense to me.

• There is too much repetition, I don’t like to code
that way.
Unifying the fn and it interface, hiding the

details and removing the repetitions, we get a better
result:
sect.para(
’...You then get ’, cmd(’LaTeX’),
’ to process the file, and it creates a
new file of typesetting commands; this
has the same name as your file but the’,

fn(’.TEX’), ’ ending is replaced by ’,
fn(’.DVI’), ’. This stands for ‘’,
it(’D’), ’e’, it(’v’), ’ice ’,
it(’I’), "ndependent’ ...")

The functions fn and it can be considered
as macros, which are expanded in Python, not in
LATEX itself. Incidentally, pdfscript implements the
\let\def=\undefined idea of Jonathan Fine [1].

3.3 Python active strings

There is still an inconvenience. What’s easy in LATEX:
... before ... \LaTeX{} ... after ...
is being written in Python as:
sect.para(’... before ... ’,

cmd(’LaTeX’),
’ ... after ... ’)

For one time use, it is ok. But when we have sev-
eral LATEXs in a paragraph, the code looks spaghetti-
ish, syntactically overcomplicated. A simple solution
is to let the computer do the low-level job. We can
write a function subst_latex, which finds the en-
tries of the substring LaTeX in the source text and
substitutes them with the corresponding commands.
With help of this function, the code can be simplified:
sect.para(subst_latex(

’... before ... LaTeX ... after ... ’))

Nearly all the paragraphs of “Essential LATEX”
contain the logo, therefore it is logical to redefine
the function para, asking it to call subst_latex
automatically. The final code is:
sect.para(

’... before ... LaTeX ... after ... ’)

In this code, the string LaTeX can be consid-
ered as an active string (by analogue to the active
characters), expanded in Python.

At this point, the code does not use pdfscript
at all. Instead, it communicates only with the esla
package, which encapsulates not only the formatting
details, but also the details of PDF generation.

4 API reference

The previous sections have given enough examples
to demonstrate how to use the pdfscript library.
Here is a more formal description.

For brevity, instead of fully qualified names like
pdfscript.something I use simple something.

4.1 Module functions

TeXsubdoc newdoc(arg1, arg2, ..., argN)

Creates a new in-memory document. If there are any
arguments (of type string or TeXsubdoc), they are
added to the document. The parts of the documents
are constructed with the following functions:
TeXsubdoc cmd(name, arg1, arg2, ..., argN)
TeXsubdoc env(name, arg1, arg2, ..., argN)
TeXsubdoc opt (arg1, arg2, ..., argN)
TeXsubdoc parm (arg1, arg2, ..., argN)
TeXsubdoc group (arg1, arg2, ..., argN)
TeXsubdoc text (arg1, arg2, ..., argN)
TeXsubdoc verbatim (arg1, arg2, ..., argN)

These functions create the corresponding ele-
ments in TEXML. The library does not validate
whether a combination of functions makes sense.
Notes on the functions:

• cmd and env require at least one argument (of
type string), which is the name.

• String arguments of cmd are wrapped with im-
plicit calls of parm.

Generate TEX documents using pdfscript



212 TUGboat, Volume 31 (2010), No. 3

• The functions text and verbatim create an el-
ement TeXML. The latter function additionally
sets the element’s attributes in such a way that
the text is passed to TEX without any changes.

4.2 Methods of TeXsubdoc

xml.dom.minidom get_root(self)

Returns an XML subtree associated with the object
self of type TeXMLsubdoc.
TeXMLsubdoc add(self, arg1, ..., argN)

Adds subdocuments argX of either type string or
TeXMLsubdoc into the subdocument self. Returns
the reference to the last added subdocument (argN,
possibly cast to the type TeXMLsubdoc).
TeXMLsubdoc cmd (self, arg1, ..., argN)
TeXMLsubdoc env (self, arg1, ..., argN)
TeXMLsubdoc opt (self, arg1, ..., argN)
TeXMLsubdoc parm (self, arg1, ..., argN)
TeXMLsubdoc group(self, arg1, ..., argN)
TeXMLsubdoc text (self, arg1, ..., argN)
TeXMLsubdoc verbatim(self, arg1, ..., argN)

The first method is a shortcut for:
self.add(cmd(arg1, ..., argN))

In this definition, the object method cmd uses
the module function cmd to create a document frag-
ment, and then calls the object method add to attach
the fragment. The other shortcuts are defined in the
same way.

4.3 Aliases

Some commands and environments can be accessed
via aliases: name(’...’) instead of cmd(’name’,
...) or env(’name’, ...). Such aliases are cre-
ated by the following module functions:
register_cmd(name)
register_env(name)

5 Conclusion and further work

Despite having no experience yet of pdfscript use
in a production environment, the experiments so far
already allow us to speculate how this tool affects
different groups: TEX users, TEX-related developers
and the world-outside-TEX.

TEX users can safely ignore pdfscript. It is
dubious to stop typesetting in TEX and start doing
it in Python. As demonstrated by the “Essential
LATEX” example, such Python-TEX code is rather
unreadable.

I expect that developers writing something-to-
LATEX converters will find pdfscript useful. The
library allows one to concentrate on the main point of
the program and not worry about generating correct

TEX syntax. Further, representing a future TEX
document in a tree simplifies adding refinements,
such as changing penalties in the last paragraph of
a section.

If TEX could be used as a library, what would
its API look like? The pdfscript approach is a
possibility. First, it is enough. Second, optimizations
are possible. Commands could be converted to tokens
directly, without serializing first to a string and then
parsing this string in TEX. Similar, text content
could immediately become TEX characters, without
first escaping and then unescaping.

For me, the most important part, however, is
how pdfscript affects the non-TEX world. In the
final version of the “Essential LATEX” example, we saw
that sections, paragraphs, inline markup and other
document elements are represented as objects with
properties and methods. This approach fits perfectly
with modern programming practice, and therefore I
hope that pdfscript will become a viable alternative
to XSL-FO and other PDF creation tools. And when
one uses pdfscript, one is actually using TEX.

The next step of the work is to move from the
prototype to a first production version. In particular,
I plan to make a PHP version of pdfscript, develop
a few PHP stylesheets (document templates) and
collect users’ feedback to decide on the priorities of
further development.

References

[1] Jonathan Fine. TEX forever! In EuroTEX 2005
(Pont-à-Mousson) Proceedings, pages 140–149,
2006. http://tug.org/TUGboat/Articles/
tb27-0/fine.pdf.

[2] Alex Papadimoulis. The Daily WTF: Curious
Perversions in Information Technology.
http://thedailywtf.com/.

[3] Oleg Parashchenko. API to generate TEX files,
search for related work. comp.text.tex, http:
//groups.google.com/group/comp.text.tex/
browse_thread/thread/ba29ef069a47f00a/.

[4] Oleg Parashchenko. TEXML: Resurrecting
TEX in the XML world. TUGboat, 28(1):5–10,
March 2007. http://tug.org/TUGboat/28-1/
tb88parashchenko.pdf.

[5] Jon Warbrick. Essential LATEX. http:
//mirror.ctan.org/info/latex-essential/.

� Oleg Parashchenko
bitplant.de GmbH
Fabrikstr. 15
89520 Heidenheim, Germany
olpa (at) uucode dot com
http://uucode.com/

Oleg Parashchenko

http://tug.org/TUGboat/Articles/tb27-0/fine.pdf
http://tug.org/TUGboat/Articles/tb27-0/fine.pdf
http://thedailywtf.com/
http://groups.google.com/group/comp.text.tex/browse_thread/thread/ba29ef069a47f00a/
http://groups.google.com/group/comp.text.tex/browse_thread/thread/ba29ef069a47f00a/
http://groups.google.com/group/comp.text.tex/browse_thread/thread/ba29ef069a47f00a/
http://tug.org/TUGboat/28-1/tb88parashchenko.pdf
http://tug.org/TUGboat/28-1/tb88parashchenko.pdf
http://mirror.ctan.org/info/latex-essential/
http://mirror.ctan.org/info/latex-essential/

	Introduction
	Designing the interface
	Sample TeX document
	TeXML version
	Direct Python counterpart of the TeXML version
	Improved Python code

	Observations on a real world example
	Python Document Class
	Python macros
	Python active strings

	API reference
	Module functions
	Methods of TeXsubdoc
	Aliases

	Conclusion and further work

