
TUGboat, Volume 35 (2014), No. 1 39

The pkgloader and lt3graph packages:
Toward simple and powerful package
management for LATEX

Michiel Helvensteijn

Abstract

This article introduces the pkgloader package. I re-
cently wrote this package to address one of the
major frustrations of LATEX: package conflicts. It
also introduces lt3graph, a LATEX3 library used by
pkgloader to do most of the heavy lifting.

1 Introduction

LATEX package conflicts are a common source of frus-
tration. If you are reading this article, you’re proba-
bly experienced enough with LATEX to have encoun-
tered them more than once. I cannot improve upon
the words of Freek Dijkstra [3] on the subject:

“Package conflicts are a hell.”

Package conflicts can exist because of the sheer power
of TEX [4], the language on which LATEX is based.
Not only is it Turing complete [8], but most of the
language can be redefined from within the language
itself. This was famously demonstrated with the TEX
script xii.tex, written by David Carlisle [1] (if you
haven’t seen it yet, download and compile it now;
it’s awesome). LATEX packages can not only add new
definitions, but also remove and modify existing ones.
They can offer domain specific languages [6], monkey-
patch the core language to hook into existing com-
mands [7], and even change the meaning of individual
symbols by altering their category code [5]. Put sim-
ply, LATEX packages have free rein. This power can be
quite useful, but makes it too easy for independent
package authors to step on each others’ toes.

A different type of conflict concerns package op-
tions. If a package is requested more than once with
different options, LATEX bails out with an error mes-
sage. This is an understandable precaution. Because
of the way package loading works, LATEX has no way
to apply the second set of options. The package will
have already been loaded with the first set.

Most package authors are well aware of these
problems. Document authors are told to avoid cer-
tain package combinations, or to load packages in
some specific order. Some of the larger packages are
designed to test for the presence of other packages in
order to circumvent known conflicts. Unfortunately,
this is all done in an ad hoc fashion.

Solving these problems on a case-by-case basis
takes time and effort for both document and package
authors. It pollutes the code, makes maintenance
more difficult, and confuses new users. We need

a systematic approach to resolve package conflicts.
This is where the power of TEX comes in handy. A
package can be written to oversee the package loading
process: a LATEX package manager. It should be easy
enough to use for the casual document author, yet
powerful enough to allow package authors to hook
into it to simplify their development process.

Section 2 introduces pkgloader, which I wrote
to fulfill this rôle. Reading this section should be
enough to give you a general idea of how to use it.
Section 3 describes lt3graph, a utility library using
the LATEX3 programming layer which does most of
the heavy lifting for pkgloader. Finally, Section 4
goes through some of the more advanced and planned
features of pkgloader.

Here is a quick glimpse of pkgloader in use:

\RequirePackage{pkgloader}
...
\documentclass{article}
...
\usepackage{algorithm}
\usepackage{hyperref}

}
any order

\usepackage{float}
...

\begin{document}
...

\end{document}

Warning: This package is still under development.
Some of the features described in this article may not
yet be fully implemented, and the presented syntax
may still change in the coming months. However, its
main purpose and the fundamental ideas underlying
its implementation are here to stay.

Community collaboration: I intend for the de-
velopment and maintenance of this package to be as
open as possible to community collaboration. This
package has a very wide scope, and is rather invasive.
If done right, it has the potential to become widely
used and improve the LATEX experience for document
authors and package authors alike. If done wrong, it
will break things and annoy many people.

I hope to bring some useful domain knowledge
to the development effort, but there are many LATEX
gurus out there who have more experience and insight
than I do. If you like the idea of pkgloader and
would like to contribute in any way, I encourage you
to contact me personally, or to file issues or pull
requests through the pkgloader Github page:
github.com/mhelvens/latex-pkgloader

2 The pkgloader package (Part 1)

This package was inspired by my PhD research [2],
which happens to be all about conflicts between inde-
pendently developed modules. I also took cues from

The pkgloader and lt3graph packages: Toward simple and powerful package management for LATEX

https://www.github.com/mhelvens/latex-pkgloader

40 TUGboat, Volume 35 (2014), No. 1

similar libraries and standards for other languages,
such as JavaScript, which is surprisingly similar to
LATEX in many ways.

2.1 How to use the package manager

LATEX packages are generally loaded with one of
the commands \usepackage, \RequirePackage, or
\RequirePackageWithOptions. In a similar way,
document classes are loaded with \documentclass,
\LoadClass or \LoadClassWithOptions. Normally,
when such a command is reached, the relevant class
or package is loaded on the spot. The idea behind
pkgloader is to make it the very first file you load:
before the document class, and before any other pack-
age. Thus, the main file for a LATEX document using
pkgloader would be structured like this:

\RequirePackage{pkgloader}
〈document class and packages in any order〉

\LoadPackagesNow }
optional...

\begin{document}
...

\end{document}

The area between \RequirePackage{pkgloader}
and \LoadPackagesNow is called the pkgloader area.
Inside this area, the loading of all classes and pack-
ages is postponed. It also ends automatically upon
reaching the end of the preamble. The package man-
ager analyzes the intercepted loading requests and
executes them in the proper order and with the
proper options, lifting this burden from the user.

2.2 A conflict resolution database

The pkgloader package does not analyze the actual
code of each package in order to detect conflicts. In
fact, because TEX is Turing complete, this would be
mathematically impossible. The package manager
is backed by a database of rules for recognizing and
resolving known conflicts, as well as performing other
neat tricks. The following shows some examples:

\Load {float} before {hyperref}
\Load {algorithm} after {hyperref}
\Load {fixltx2e} always early

because {it fixes some imperfections
in LaTeX2e}

\Load error if {algorithms && pseudocode}
because {they provide the same

functionality and conflict
on many command names}

The first two rules encode some workarounds for the
hyperref package, which is notorious for causing
conflicts. The first one says that float must be
loaded before hyperref. Similarly, the second rule

ensures that hyperref is loaded before algorithm.
These are the rules that would allow the code on
page 39 to compile without problems. Note that
neither rule actually loads any packages. They simply
tell the package manager how to treat certain pairs
of packages, should they ever be requested together
in a single document.

The third rule states that fixltx2e must al-
ways be loaded, and must be loaded early. The fourth
rule states that the algorithms and pseudocode
packages should never be loaded together. They both
also include a textual reason, which documents the
rule, and is included in certain error messages.

To better understand how these rules work, let’s
dive into their underlying model: a directed graph.

3 The lt3graph Package

The pkgloader package is written in the experimen-
tal LATEX3 programming layer expl3, which gives us
something akin to a traditional imperative program-
ming language, with data structures, while loops,
and so on. Let’s face it, TEX is no one’s first choice
for a programming language. But expl3 makes it
bearable. So kudos to the LATEX3 team!

To represent graphs, I wrote a data-structure
package called lt3graph.1 This library was born as
a means to an end, but has grown into a full-fledged
general-purpose data structure for representing and
analyzing directed graphs.

A directed graph contains vertices (nodes) and
edges (arrows). Using lt3graph, an example graph
may be defined as follows:

\ExplSyntaxOn
\graph_new:N \l_my_graph
\graph_put_vertex:Nn \l_my_graph {v}
\graph_put_vertex:Nn \l_my_graph {w}
\graph_put_vertex:Nn \l_my_graph {x}
\graph_put_vertex:Nn \l_my_graph {y}
\graph_put_vertex:Nn \l_my_graph {z}
\graph_put_edge:Nnn \l_my_graph {v} {w}
\graph_put_edge:Nnn \l_my_graph {w} {x}
\graph_put_edge:Nnn \l_my_graph {w} {y}
\graph_put_edge:Nnn \l_my_graph {w} {z}
\graph_put_edge:Nnn \l_my_graph {y} {z}
\ExplSyntaxOff

Each vertex is identified by a key, which, to this
library, is a string: a list of characters with category
code 12 and spaces with category code 10. An edge
is then declared between two vertices by referring to
their keys. By supplying an additional argument to
the functions above, you can store arbitrary data in

1 Bearing the prefix lt3 rather than the more common
prefix l3 indicates that the package is not officially supported
by the LATEX3 team.

Michiel Helvensteijn

TUGboat, Volume 35 (2014), No. 1 41

a vertex or edge for later retrieval. Let’s use TikZ to
visualize this graph:

\newcommand{\vrt}[1]
{\node(#1){\ttfamily\vphantom{Iy}#1};}

\begin{tikzpicture}[every path/.style=
{line width=1pt,->}]

\matrix[nodes={circle,draw},
row sep=1cm, column sep=1cm,
execute at begin cell=\vrt]

{ v & w & x \\
& y & z \\ };

\ExplSyntaxOn
\graph_map_edges_inline:Nn

\l_my_graph
{ \draw (#1) to (#2); }

\ExplSyntaxOff
\end{tikzpicture}

v w x

y z

Just to be clear, this library does not, inherently,
understand any TikZ. What it does is help you to
analyze the structure of your graph. For example,
does it contain a cycle?

\ExplSyntaxOn
\graph_if_cyclic:NTF

\l_my_graph {Yep} {Nope}
\ExplSyntaxOff

Nope

Indeed, there are no cycles in this graph. While we’re
at it, is vertex w reachable from vertex y?

\ExplSyntaxOn
\graph_acyclic_if_path_exist:NnnTF

\l_my_graph {y} {w} {Yep} {Nope}
\ExplSyntaxOff

Nope

Quite true. Finally, and most importantly, you can
interpret the graph as a dependency graph and list
its vertices in topological order:

\ExplSyntaxOn
\clist_new:N \LinearClist
\graph_map_topological_order_inline:Nn

\l_my_graph
{ \clist_put_right:Nn
\LinearClist {\texttt{#1}} }

\ExplSyntaxOff
$ \LinearClist $

v,w,x,y,z

A topological order is not uniquely determined. The
important thing is that the constraints imposed by
the graph are respected.

4 The pkgloader package (Part 2)

The pkgloader package uses graph vertices to rep-
resent LATEX packages and arrows to encode package
ordering rules. At the end, selected packages are
loaded in topological order.

Let’s take a more detailed look at some of the
features of pkgloader.

4.1 Rules

Each \Load rule can contain a number of different
clauses. We look at them one by one.

It usually contains a package description, con-
sisting of a name, a set of options and a minimal
version, just like the \usepackage command:

\Load [options] {package-name} [version]

It can contain a condition clause, indicating
when the rule should be applied. This takes the form
of a Boolean formula in expl3 style, in which the
atomic propositions are package names:

\Load {pkg1} if {pkg2 || pkg3 && !pkg4}

This rule would load pkg1 if either pkg2 will be
loaded too, or if pkg3 will be loaded but pkg4
will not. Alternatively, the condition clause can
be always, indicating that the rule should be ap-
plied under any conditions. Finally, the keywords
if loaded can be used to apply the rule only if
the package named in the package description is re-
quested anyway. This is the default behavior, but
the keywords can be included to make it explicit.

There is one exception to the structure described
above. Instead of a package description, a rule can
contain the error keyword, followed by a condition
clause, to describe conditions that should never oc-
cur — usually invalid package combinations:

\Load error if {pkgX && pkgY}

When multiple condition clauses are present in a
single rule, their disjunction is used. In other words,
the rule is applied if any of its conditions is satisfied.

A non-error rule may contain an order clause,
to ensure that the package described by the rule
is loaded in a specific order with regard to other
packages:

\Load {A} after {B,C} before {D}

This rule ensures that if package A is ever loaded, it
is never loaded before B or C, and never after D. This

The pkgloader and lt3graph packages: Toward simple and powerful package management for LATEX

42 TUGboat, Volume 35 (2014), No. 1

is where the graph representation comes in. The
above rule would yield a graph like this:

B A D

C

This can take care of specific known package
ordering conflicts. But some packages should, as a
rule of thumb, be loaded before all other packages, or
after all others, unless specified otherwise. A typical
example is the hyperref package, which should
almost always be loaded late in the run. For this,
the early and late clauses may be used:

\Load {hyperref} late

The early and late clauses work by ordering the
package relative to one of two placeholder nodes:

1 2 hyperref

early normal late

These two nodes are always present in the graph.
Ordering a package early is intuitively the same as
ordering it ‘before {1}’. And ordering it late is
the same as ordering it ‘after {2}’. All packages
that are, after considering all rules, not (indirectly)
ordered ‘before {1}’ or ‘after {2}’ are automati-
cally ordered ‘after {1} before {2}’. A rule can
have any number of order clauses, and all are taken
into account when one of the conditions of the rule
is satisfied.

Finally, a rule can be annotated with a reason,
explaining why it was created:

\Load {comicsans} always
because {that font is awesome!}

This text does not have any effect on the behavior of
the rule. It is meant for human consumption, though
should not be formatted in any way. It should be
semantically and grammatically correct when follow-
ing the words “This rule was created because . . . ”.
It can also be used for citing relevant sources. It is
used in certain pkgloader error messages and may
eventually be used to generate documentation.

4.2 Rulesets

You may be wondering: who makes up these rules?
Short answer: Anyone. Rules can be placed di-

rectly inside the pkgloader area, but they can also
be bundled in a .sty file. By default, pkgloader

loads a recommended set of rules, allowing the aver-
age user to get started without any hassle. But this
behavior can be overwritten using package options:

\RequirePackage[recommended=false,
my-better-rules]
{pkgloader}

...
\LoadPackagesNow

This means: the pkgloader-recommended.sty
file, which is usually preloaded by default, should
not be loaded for this document. Instead, load the
pkgloader-my-better-rules.sty file.

Take note of the following: every ruleset should
be bundled in a pkgloader-〈something〉.sty file,
and can then be loaded by specifying 〈something〉 as
a package option.

So basically, any user can create rules for their
own documents, or distribute custom rulesets, e.g.,
through CTAN. But primarily, I expect two groups
of people to author pkgloader rules:

The LATEX community: The recommended rule-
set would, ideally, be populated further through
the efforts of anyone who diagnoses and solves
package conflicts. Perhaps through websites like
tex.stackexchange.com, or by filing issues
or pull-requests to the pkgloader Github page.

Package authors: pkgloader will eventually be
directly usable for package authors just as for
document authors, to include their own rules
from right inside their packages. Rather than
manually scanning for and fixing potential con-
flicts, they could leverage pkgloader, as in:

\RequirePackage{pkgloader}
\Load me before {some-pkg}
\Load me after {some-other-pkg}

\ProcessRulesNow

It may be possible to apply such rules in the same
LATEX run in which they are encountered. But if
not, the package manager will know what to do in
the next run through the use of auxiliary files. This
functionality has not yet been implemented.

4.3 Error messages

There are two types of error messages that may be
generated by pkgloader.

The first type of error message happens when
an error rule is triggered. It looks like this:

A combination of packages fitting

the following condition was requested:

〈condition〉
This is an error because 〈reason〉.

Michiel Helvensteijn

http://tex.stackexchange.com
https://www.github.com/mhelvens/latex-pkgloader

TUGboat, Volume 35 (2014), No. 1 43

The second type of error message is a bit more
interesting. Since rules can effectively come from any
source, it is possible to apply rules that contradict
each other. To give an (unrealistic) example:

\Load {pkgX} always before {pkgY}
because {pkgX is better}

\Load {pkgY} always before {pkgX}
because {pkgY is better}

pkgX pkgY

A potential circular ordering is not necessarily a
problem, so long as both rules are never applied
in the same run. But in this exact example, the
following error message will be generated:

There is a cycle in the requested

package loading order:

pkgX

--1--> pkgY

--2--> pkgX

The circular reasoning is as follows:

(1) ’pkgX’ is to be loaded before

’pkgY’ because pkgX is better.

(2) ’pkgY’ is to be loaded before

’pkgX’ because pkgY is better.

Whenever this happens, the user may want to re-
consider one of their included rulesets, or file a bug-
report to the responsible party — especially if the
circularity comes from the recommended ruleset.

4.4 Options and versions

The package manager need not be confined to playing
with the package loading order. While intercepting
package loading requests, it will be able to accu-
mulate package options and versions as well, and
then combine them in a multitude of flexible ways.
Possible ways of combining option-lists include:

• Concatenate all option-lists for the same package
into a single list, in any arbitrary order.

• Interpret key=value options, and generate an
error message when two different instances call
for two different values for the same key.

• Provide a tailor-made function for combining
option lists for a specific package.

As for package versions, it would make sense to
take the ‘maximum’ version-string that is encoun-
tered, and use that to load the actual package.

As of this writing, neither of these features has
been implemented.

5 Conclusion

I hope this article and the packages described therein
have been useful and/or inspiring. And I hope to
have convinced you that the idea of a LATEX package
manager is worth pursuing.

Both packages are available on CTAN:

www.ctan.org/pkg/pkgloader
www.ctan.org/pkg/lt3graph

I love feedback, and I love questions. I can
be reached through the e-mail address and website
specified in the signature block below the references.
Any kind of feedback or patches regarding one of the
packages should go through their Github pages:

github.com/mhelvens/latex-pkgloader
github.com/mhelvens/latex-lt3graph

Happy TEXing!

References

[1] David Carlisle. xii.tex, December 1998.
http://www.ctan.org/pkg/xii.

[2] Dave Clarke, Michiel Helvensteijn, and
Ina Schaefer. Abstract delta modeling.
SIGPLAN Notices, 46(2):13–22, February
2011. Proceedings of GPCE’10, October 10–13,
2010, Eindhoven, The Netherlands. http:
//doi.acm.org/10.1145/1942788.1868298.

[3] Freek Dijkstra. LaTeX package conflicts,
June 2012. http://www.macfreek.nl/

memory/LaTeX_package_conflicts.

[4] Donald E. Knuth. The TEXbook.
Addison-Wesley, Reading, MA, USA,
1986.

[5] Seamus. What are category codes?,
April 2011. http://tex.stackexchange.com/
questions/16410/what-are-category-codes.

[6] Wikipedia. Domain-specific language, 2014.
http://en.wikipedia.org/wiki/

Domain-specific_language.

[7] Wikipedia. Monkey patch, January 2014.
http://en.wikipedia.org/w/index.php?

title=Monkey_patch&oldid=586056263.

[8] Wikipedia. Turing completeness, 2014.
http://en.wikipedia.org/wiki/Turing_

completeness.

� Michiel Helvensteijn
Leiden University,

Niels Bohrweg 1,
2333 CA, Leiden,
the Netherlands

mhelvens+latex (at) gmail dot com
http://mhelvens.net

The pkgloader and lt3graph packages: Toward simple and powerful package management for LATEX

www.ctan.org/pkg/pkgloader
www.ctan.org/pkg/lt3graph
https://www.github.com/mhelvens/latex-pkgloader
https://www.github.com/mhelvens/latex-lt3graph
http://www.ctan.org/pkg/xii
http://doi.acm.org/10.1145/1942788.1868298
http://doi.acm.org/10.1145/1942788.1868298
http://www.macfreek.nl/memory/LaTeX_package_conflicts
http://www.macfreek.nl/memory/LaTeX_package_conflicts
http://tex.stackexchange.com/questions/16410/what-are-category-codes
http://tex.stackexchange.com/questions/16410/what-are-category-codes
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Monkey_patch&oldid=586056263
http://en.wikipedia.org/w/index.php?title=Monkey_patch&oldid=586056263
http://en.wikipedia.org/wiki/Turing_completeness
http://en.wikipedia.org/wiki/Turing_completeness

	Introduction
	The pkgloader package (Part 1)
	How to use the package manager
	A conflict resolution database

	The lt3graph Package
	The pkgloader package (Part 2)
	Rules
	Rulesets
	Error messages
	Options and versions

	Conclusion

