
TUGboat, Volume 35 (2014), No. 1 51

Numerical methods with LuaLATEX

Juan I. Montijano, Mario Pérez, Luis Rández
and Juan Luis Varona

Abstract

An extension of TEX known as LuaTEX has been in
development for the past few years. Its purpose is to
allow TEX to execute scripts written in the general
purpose programming language Lua. There is also
LuaLATEX, which is the corresponding extension for
LATEX.

In this paper, we show how LuaLATEX can be
used to perform tasks that require a large amount
of mathematical computation. With LuaLATEX in-
stead of LATEX, we achieve important improvements:
since Lua is a general purpose language, rendering
documents that include evaluation of mathematical
algorithms is much easier, and generating the PDF

file becomes much faster.

Introduction

TEX (and LATEX) is a document markup language
used to typeset beautiful papers and books. Al-
though it can also do programming commands such
as conditional execution, it is not a general purpose
programming language. Thus there are many tasks
that are easily done with other programming lan-
guages, but are very complicated or very slow when
done with TEX. Due to this limitation, auxiliary
programs have been developed to assist TEX with
common tasks related to document preparation. For
instance, bibtex or biber to build bibliographies, and
makeindex or xindy to generate indexes. In both
cases, sorting a list alphabetically is a relatively sim-
ple task for most programming languages, but it is
very complicated to do with TEX, hence the desire
for auxiliary applications.

Another shortcoming of TEX is the computa-
tion of mathematical expressions. One of the most
common uses of TEX is to compose mathematical
formulas, and it does this extremely well. However
TEX is not good at computing mathematics. For
instance, TEX itself does not have built-in functions
to compute a square root or a sine. Although it is
possible to compute mathematical functions with the
help of auxiliary packages written in TEX, internally
these packages must compute functions using only
addition, subtraction, multiplication and division op-
erations—and a very large number of them. This
is difficult to program (for package developers) and
slow in execution.

To address the need to do more complex func-
tions within TEX, an extension of TEX called LuaTEX

was undertaken a few years ago. (The leaders of the
project and main developers are Taco Hoekwater,
Hartmut Henkel and Hans Hagen.) The idea was
to enhance TEX with a previously existing general
purpose programming language. After careful eval-
uation of possible candidates, the language chosen
was Lua (see http://www.lua.org), a powerful, fast,
lightweight, embeddable scripting language that has,
of course, a free software license suitable to be used
with TEX. Moreover, Lua is easy to learn and use,
and anyone with basic programming skills can use it
without difficulty. (Many examples of Lua code can
be found later in this article, and also, for example,
at http://rosettacode.org/wiki/Category:Lua,
and http://lua-users.org/.)

LuaTEX is not TEX, but an extension of TEX, in
the same way that pdfTEX or X ETEX are extensions.
In fact, LuaTEX includes pdfTEX (it is an extension
of pdfTEX, and offers backward compatibility), and
also has many of the features of X ETEX.

LuaTEX is still in a beta stage, but the current
versions are usable (the first public beta was launched
in 2007, and when this paper was written in January
2013, the release used was version 0.74).

It has many new features useful for typographic
composition; and examples can be seen at the project
web site http://www.luatex.org, and some papers
using development versions have been published in
TUGboat, among them [3, 2, 4, 5, 7, 11]. Most
of those articles are devoted to the internals and
are very technical, only for true TEX wizards; we
do not deal with this in this paper. Instead, our
goal is to show how the mathematical power of the
embedded language Lua can be used in LuaTEX. Of
course, when we build LATEX over LuaTEX, we get
so-called LuaLATEX, which will be familiar to regular
LATEX users.

All the examples in this paper are done with
LuaLATEX. It is important to note that the current
version of LuaTEX is not meant for production and
beta users are warned of possible future changes in
the syntax. However, the examples in this article
use only a few general Lua-specific commands, so it
is likely these examples will continue to work with
future versions.

To process a LuaLATEX document we perform
the following steps: First, we must compile with
LuaLATEX, not with LATEX; how to do this depends on
the editor being used. Second, we must load the pack-
age luacode with \usepackage{luacode}. Then, in-
side LuaLATEX, we can jump into Lua mode with the
command \directlua; moreover, we can define Lua
routines in a \begin{luacode}. . . \end{luacode}
environment (also {luacode*} instead of {luacode}

Numerical methods with LuaLATEX

52 TUGboat, Volume 35 (2014), No. 1

can be used); the precise syntax can be found in the
manual “The luacode package” (by Manuel Pégourié-
Gonnard) [10]. In the examples, we do not explain
all the details of the code; they are left to the reader’s
intuition.

In this paper we present four examples. The
first is very simple: the computation of a trigonomet-
ric table. In the other examples we use the LATEX
packages tikz and pgfplots to show Lua’s ability to
produce graphical output. Some mathematical skill
may be necessary to fully understand the examples,
but the reader can nevertheless see how Lua is able
to manage the computation-intensive job. In any
case, we do not explore the more complex possibili-
ties, which involve writing Lua programs that load
existing Lua modules or libraries to perform a wide
range of functions and specialized tasks.

1 First example: a trigonometric table

To show how to use Lua, let us begin with a simple
but complete example. Observe the following docu-
ment, which embeds some Lua source code. Type-
setting it with LuaLATEX, we get the trigonometric
table shown in Figure 1.

\documentclass{article}

\usepackage{luacode}

\begin{luacode*}

function trigtable ()

for t=0, 45, 3 do

x=math.rad(t)

tex.print(string.format(

'%2d$^{\\circ}$ & %1.5f & %1.5f & %1.5f '

.. '& %1.5f \\\\',

t, x, math.sin(x), math.cos(x),

math.tan(x)))

end

end

\end{luacode*}

\newcommand{\trigtable}

{\luadirect{trigtable()}}

\begin{document}

\begin{tabular}{rcccc}

\hline

& x & $\sin(x)$ & $\cos(x)$ & $\tan(x)$ \\

\hline

\trigtable

\hline

\end{tabular}

\end{document}

The luacode* environment contains a small Lua
program with a function named trigtable (with no
arguments). This function consists of a loop with a
variable t representing degrees. Lua converts t to
radians with x=math.rad(t); then, Lua computes

x sin(x) cos(x) tan(x)

0◦ 0.00000 0.00000 1.00000 0.00000
3◦ 0.05236 0.05234 0.99863 0.05241
6◦ 0.10472 0.10453 0.99452 0.10510
9◦ 0.15708 0.15643 0.98769 0.15838

12◦ 0.20944 0.20791 0.97815 0.21256
15◦ 0.26180 0.25882 0.96593 0.26795
18◦ 0.31416 0.30902 0.95106 0.32492
21◦ 0.36652 0.35837 0.93358 0.38386
24◦ 0.41888 0.40674 0.91355 0.44523
27◦ 0.47124 0.45399 0.89101 0.50953
30◦ 0.52360 0.50000 0.86603 0.57735
33◦ 0.57596 0.54464 0.83867 0.64941
36◦ 0.62832 0.58779 0.80902 0.72654
39◦ 0.68068 0.62932 0.77715 0.80978
42◦ 0.73304 0.66913 0.74314 0.90040
45◦ 0.78540 0.70711 0.70711 1.00000

Figure 1: A trigonometric table.

the sine, the cosine and the tangent. Inside Lua mode,
it “exports” to LATEX with tex.print; note that we
escape any backslash by doubling it. Moreover, we
have taken into account the following notation to
give format to numbers:

• %2d indicates that a integer number must be
displayed with 2 digits.

• %1.5f indicates that a floating point number
must be displayed with 1 digit before the decimal
point and 5 digits after it.

The LATEX part has the skeleton of a tabular
built with the data exported by Lua.

2 Second example: Gibbs phenomenon

Now and in what follows, we will use graphics to
show the output of some mathematical routines. A
very convenient way to do it is by means of the
PGF/TikZ package (TikZ is a high-level interface to
PGF) by Till Tantau (the huge manual [12] of the
current version 2.10 has more than 700 pages of doc-
umentation and examples); two short introductory
papers are [8, 9]. Based on PGF/TikZ, the package
pgfplots (by Christian Feuersänger [1]) has additional
facilities to plot mathematical functions like y = f(x)
(or a parametric function x = f(t), y = g(t)) or visu-
alize data in two or three dimensions. For instance,
pgfplots can draw the axis automatically, as usual in
any graphic software.

For completeness, let us start showing the syntax
of pgfplots by means of a data plot; this is an example
extracted from its very complete manual (more than
400 pages in the present version 1.7). After loading
\usepackage{pgfplots}, the code

\begin{tikzpicture}

\begin{axis}[xlabel=Cost, ylabel=Error]

Juan I. Montijano, Mario Pérez, Luis Rández and Juan Luis Varona

TUGboat, Volume 35 (2014), No. 1 53

2 3 4 5 6 7 8

−8

−6

−4

Cost

E
rr
or

Figure 2: Plotting of a data table with pgfplots.

\addplot[color=red,mark=x] coordinates {

(2,-2.8559703) (3,-3.5301677) (4,-4.3050655)

(5,-5.1413136) (6,-6.0322865) (7,-6.9675052)

(8,-7.9377747)

};

\end{axis}

\end{tikzpicture}

generates the plot in Figure 2. Before going on, note
that in future versions the packages PGF/TikZ and
pgfplots could, internally, use LuaLATEX themselves
in a way transparent to the user. This would allow
extra power, calculating speed, and simplicity, but
this is not yet available and we will not worry about
it in this paper.

In the next example we consider the Gibbs phe-
nomenon. Using LuaLATEX, the idea is to compute a
data table with Lua (easy to program, powerful and
fast in the execution), and plot it with pgfplots.

The Gibbs phenomenon is the peculiar way in
which the Fourier series of a piecewise continuously
differentiable periodic function behaves at a jump dis-
continuity, where the n-th partial sum of the Fourier
series has large oscillations near the jump. It is ex-
plained in many harmonic analysis texts, but for the
purpose of this paper the reader can refer to [13].

In our case we consider the function f(x) = (π−
x)/2 in the interval (0, 2π) extended by periodicity
to the whole real line (it has discontinuity jumps at
2jπ for every integer j). Its Fourier series is

f(x) =

∞∑
k=1

sin(kx)

k
.

To show the Gibbs phenomenon, we evaluate the

partial sum
∑n

k=1
sin(kx)

k (for n = 30) with Lua to
generate a table of data, and we plot it with pgfplots.

In the .tex file, we include the following Lua
to compute the partial sum (function partial_sum)

and to export the data with the syntax required by
pgfplots (function print_partial_sum):

\begin{luacode*}

-- Fourier series

function partial_sum(n,x)

partial = 0;

for k = 1, n, 1 do

partial = partial + math.sin(k*x)/k

end;

return partial

end

-- Code to write PGFplots data as coordinates

function print_partial_sum(n,xMin,xMax,npoints,

option)

local delta = (xMax-xMin)/(npoints-1)

local x = xMin

if option~=[[]] then

tex.sprint("\\addplot[" .. option

.. "] coordinates{")

else

tex.sprint("\\addplot coordinates{")

end

for i=1, npoints do

y = partial_sum(n,x)

tex.sprint("("..x..","..y..")")

x = x+delta

end

tex.sprint("}")

end

\end{luacode*}

Then, we also define the command

\newcommand\addLUADEDplot[5][]{%

\directlua{print_partial_sum(#2,#3,#4,#5,

[[#1]])}%

}

which will be used to call the data from pgfplots.
Here, the parameters have the following meaning: #2
indicates the number of terms to be added (n = 30
in our case); the plot will be done in the interval [#3,
#4] (from x = 0 to 10π) sampled with #5 points (to
get a very smooth graphic and to show the power of
the method we use 1000 points); finally, the optional
argument #1 is used to manage optional arguments
in the \addplot environment (for instance color
[grayscaled for TUGboat], width of the line, . . .).

Now, the plot is generated by

\pgfplotsset{width=.9\hsize}

\begin{tikzpicture}\small

\begin{axis}[

xmin=-0.2, xmax=31.6,

ymin=-1.85, ymax=1.85,

xtick={0,5,10,15,20,25,30},

ytick={-1.5,-1.0,-0.5,0.5,1.0,1.5},

minor x tick num=4,

minor y tick num=4,

Numerical methods with LuaLATEX

54 TUGboat, Volume 35 (2014), No. 1

5 10 15 20 25 30

−1.5

−1

−0.5

0.5

1

1.5

Figure 3: The partial sum
∑30

k=1

sin(kx)
k

of the Fourier
series of f(x) = (π − x)/2 illustrating the Gibbs
phenomenon.

axis lines=middle,

axis line style={-}

]

% SYNTAX: Partial sum 30, from x = 0 to 10*pi,

% sampled in 1000 points.

\addLUADEDplot[color=blue,smooth]{30}

{0}{10*math.pi}{1000};

\end{axis}

\end{tikzpicture}

See the output in Figure 3.

3 Third example: Runge-Kutta method

A differential equation is an equation that links an
unknown function and its derivatives, and these equa-
tions play a prominent role in engineering, physics,
economics, and other disciplines. When the value of
the function at an initial point is fixed, a differential
equation is known as an initial value problem. The
mathematical theory of differential equations shows
that, under very general conditions, an initial value
problem has a unique solution. Usually, it is not
possible to find the exact solution in an explicit form,
and it is necessary to approximate it by means of
numerical methods.

One of the most popular methods to integrate
numerically an initial value problem{

y′(t) = f(t, y(t)),
y(t0) = y0

is the classical Runge-Kutta method of order 4. With
it, we compute in an approximate way the values
yi ' y(ti) at a set of points {ti} starting from i = 0
and with ti+1 = ti + h for every i by the algorithm

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4),

where
k1 = hf(ti, yi),

k2 = hf(ti +
1
2h, yi +

1
2k1),

k3 = hf(ti +
1
2h, yi +

1
2k2),

k4 = hf(ti + h, yi + k3).

See, for instance, [15].
Here, we consider the initial value problem{

y′(t) = y(t) cos
(
t+

√
1 + y(t)

)
,

y(0) = 1.

In the Lua part of our .tex file, we compute
the values {(ti, yi)} and export them with pgfplots
syntax by means of

\begin{luacode*}

-- Differential equation y'(t) = f(t,y)

-- with f(t,y) = y * cos(t+sqrt(1+y)).

-- Initial condition: y(0) = 1

function f(t,y)

return y * math.cos(t+math.sqrt(1+y))

end

-- Code to write PGFplots data as coordinates

function print_RKfour(tMax,npoints,option)

local t0 = 0.0

local y0 = 1.0

local h = (tMax-t0)/(npoints-1)

local t = t0

local y = y0

if option~=[[]] then

tex.sprint("\\addplot[" .. option

.. "] coordinates{")

else

tex.sprint("\\addplot coordinates{")

end

tex.sprint("("..t0..","..y0..")")

for i=1, npoints do

k1 = h * f(t,y)

k2 = h * f(t+h/2,y+k1/2)

k3 = h * f(t+h/2,y+k2/2)

k4 = h * f(t+h,y+k3)

y = y + (k1+2*k2+2*k3+k4)/6

t = t + h

tex.sprint("("..t..","..y..")")

end

tex.sprint("}")

end

\end{luacode*}

Also, we define the command

\newcommand\addLUADEDplot[3][]{%

\directlua{print_RKfour(#2,#3,[[#1]])}%

}

to call the Lua routine from the LATEX part (the
parameter #2 indicates the final value of t, and #3 is
the number of sampled points).

Juan I. Montijano, Mario Pérez, Luis Rández and Juan Luis Varona

TUGboat, Volume 35 (2014), No. 1 55

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Figure 4: Solution of the differential equation
y′(t) = y(t) cos

(
t +

√
1 + y(t)

)
with initial condition

y(0) = 1.

Then, the graphic of Figure 4, which shows the
solution of our initial value problem, is created by
means of

\pgfplotsset{width=0.9\hsize}

\begin{tikzpicture}

\begin{axis}[xmin=-0.5, xmax=30.5,

ymin=-0.02, ymax=1.03,

xtick={0,5,...,30}, ytick={0,0.2,...,1.0},

enlarge x limits=true,

minor x tick num=4, minor y tick num=4,

axis lines=middle, axis line style={-}

]

% SYNTAX: Solution of the initial value problem

% in the interval [0,30] sampled at 200 points

\addLUADEDplot[color=blue,smooth]{30}{200};

\end{axis}

\end{tikzpicture}

4 Fourth example: Lorenz attractor

The Lorenz attractor is a strange attractor that arises
in a system of equations describing the 2-dimensional
flow of a fluid of uniform depth, with an imposed
vertical temperature difference. In the early 1960s,
Lorenz [6] discovered the chaotic behavior of a sim-
plified 3-dimensional system of this problem, now
known as the Lorenz equations: x′(t) = σ(y(t)− x(t)),

y′(t) = −x(t)z(t) + ρx(t)− y(t),
z′(t) = x(t)y(t)− βz(t).

The parameters σ, ρ, and β are usually assumed to
be positive. Lorenz used the values σ = 10, ρ = 28
and β = 8/3. The system exhibits a chaotic behavior
for these values; in fact, it became the first example
of a chaotic system. A more complete description
can be found in [14].

Figure 5 shows the numerical solution of the
Lorenz equations calculated with σ = 3, ρ = 26.5

−10
0

10
−10

0
10

20

40

Figure 5: The Lorentz attractor (six orbits starting at
several initial points).

and β = 1. Six orbits starting at several initial points
close to (0, 1, 0) are plotted in different colors; all of
them converge to the 3-dimensional chaotic attractor
known as the Lorenz attractor.

The Lua part of the program uses a discretiza-
tion of the Lorenz equations (technically, this is the
explicit Euler method yi+1 = yi + hf(ti, yi), which
is less precise than the Runge-Kutta method of the
previous section, but enough to find the attractor):

\begin{luacode*}

-- Differential equation of Lorenz attractor

function f(x,y,z)

local sigma = 3

local rho = 26.5

local beta = 1

return {sigma*(y-x),

-x*z + rho*x - y,

x*y - beta*z}

end

-- Code to write PGFplots data as coordinates

function print_LorAttrWithEulerMethod(h,npoints,

option)

-- The initial point (x0,y0,z0)

local x0 = 0.0

local y0 = 1.0

local z0 = 0.0

-- add random number between -0.25 and 0.25

local x = x0 + (math.random()-0.5)/2

local y = y0 + (math.random()-0.5)/2

local z = z0 + (math.random()-0.5)/2

if option ~= [[]] then

tex.sprint("\\addplot3[" .. option

.. "] coordinates{")

else

tex.sprint("\\addplot3 coordinates{")

end

-- dismiss the first 100 points

-- to go into the attractor

for i=1, 100 do

Numerical methods with LuaLATEX

56 TUGboat, Volume 35 (2014), No. 1

m = f(x,y,z)

x = x + h * m[1]

y = y + h * m[2]

z = z + h * m[3]

end

for i=1, npoints do

m = f(x,y,z)

x = x + h * m[1]

y = y + h * m[2]

z = z + h * m[3]

tex.sprint("("..x..","..y..","..z..")")

end

tex.sprint("}")

end

\end{luacode*}

The function which calls the Lua part from the
LATEX part is

\newcommand\addLUADEDplot[3][]{%

\directlua{print_LorAttrWithEulerMethod

(#2,#3,[[#1]])}%

}

Here, the parameter #2 gives the step of the dis-
cretization, and #3 is the number of points.

The LATEX part is the following. In it, we call
the Lua function six times with different colors:

\pgfplotsset{width=.9\hsize}

\begin{tikzpicture}

\begin{axis}

% SYNTAX: Solution of the Lorenz system

% with step h=0.02 sampled at 1000 points.

\addLUADEDplot[color=red,smooth]{0.02}{1000};

\addLUADEDplot[color=green,smooth]{0.02}{1000};

\addLUADEDplot[color=blue,smooth]{0.02}{1000};

\addLUADEDplot[color=cyan,smooth]{0.02}{1000};

\addLUADEDplot[color=magenta,smooth]{0.02}{1000};

\addLUADEDplot[color=yellow,smooth]{0.02}{1000};

\end{axis}

\end{tikzpicture}

References

[1] C. Feuersänger, Manual for Package
PGFPLOTS. http://mirror.ctan.org/
graphics/pgf/contrib/pgfplots/doc/

pgfplots.pdf

[2] H. Hagen, LuaTEX: Halfway to version 1,
TUGboat, Volume 30 (2009), No. 2,
183–186. http://tug.org/TUGboat/tb30-2/
tb95hagen-luatex.pdf

[3] T. Hoekwater and H. Henkel, LuaTEX 0.60:
An overview of changes, TUGboat, Volume
31 (2010), No. 2, 174–177. http://tug.org/
TUGboat/tb31-2/tb98hoekwater.pdf

[4] P. Isambert, Three things you can do
with LuaTEX that would be extremely
painful otherwise, TUGboat, Volume 31
(2010), No. 3, 184–190. http://tug.org/
TUGboat/tb31-3/tb99isambert.pdf

[5] P. Isambert, OpenType fonts in LuaTEX,
TUGboat, Volume 33 (2012), No. 1,
59–85. http://tug.org/TUGboat/tb33-1/
tb103isambert.pdf

[6] E. N. Lorenz, Deterministic Nonperiodic Flow,
J. Atmospheric Sci., Volume 20 (1963), No. 2,
130–141. http://dx.doi.org/10.1175/
1520-0469(1963)020<0130:DNF>2.0.CO;2

[7] A. Mahajan, LuaTEX: A user’s perspective,
TUGboat, Volume 30 (2009), No. 2,
247–251. http://tug.org/TUGboat/tb30-2/
tb95mahajan-luatex.pdf

[8] A. Mertz and W. Slough, Graphics with
PGF and TikZ, TUGboat, Volume 28 (2007),
No. 1, 91–99. http://tug.org/TUGboat/
tb28-1/tb88mertz.pdf

[9] A. Mertz and W. Slough, A TikZ tutorial:
Generating graphics in the spirit of TEX,
TUGboat, Volume 30 (2009), No. 2,
214–226. http://tug.org/TUGboat/tb30-2/
tb95mertz.pdf

[10] M. Pégourié-Gonnard, The luacode package.
http://mirror.ctan.org/macros/luatex/

latex/luacode/luacode.pdf

[11] A. Reutenauer, LuaTEX for the LATEX user:
An introduction, TUGboat, Volume 30
(2009), No. 2, 169. http://tug.org/TUGboat/
tb30-2/tb95reutenauer.pdf

[12] T. Tantau, TikZ & PGF. http://mirror.
ctan.org/graphics/pgf/base/doc/generic/

pgf/pgfmanual.pdf

[13] Wikipedia, Gibbs phenomenon. http://en.
wikipedia.org/wiki/Gibbs_phenomenon

[14] Wikipedia, Lorenz system. http://en.
wikipedia.org/wiki/Lorenz_system

[15] Wikipedia, Runge-Kutta methods. http://en.
wikipedia.org/wiki/Runge-Kutta_methods

� Juan I. Montijano, Mario Pérez,
Luis Rández and
Juan Luis Varona

Universidad de Zaragoza
(Zaragoza, Spain) and
Universidad de La Rioja
(Logroño, Spain)

{monti,mperez,randez} (at)

unizar dot es and
jvarona (at) unirioja dot es

Juan I. Montijano, Mario Pérez, Luis Rández and Juan Luis Varona

