
168 TUGboat, Volume 35 (2014), No. 2

Creating (mathematical) jigsaw puzzles
using TEX and friends

Julian Gilbey

Abstract

The jigsaw puzzles considered here are constructed
from shapes such as triangles, squares and so on,
with questions and answers written along their edges.
The aim is to match them up correctly. Related
puzzle varieties are card sorts and dominoes. We
describe a TEX- and Python-based system designed
to author such puzzles. The input is a text-based
YAML file; the output can include both printable
PDFs for cutting up and Markdown files for potential
conversion to HTML.

1 Background

1.1 History and benefits of (mathematical)
jigsaw puzzle software

In 2005, Hermitech Laboratory created Jigsaw 2005,
software designed to create mathematical jigsaws.
These are puzzles consisting of square and/or trian-
gular pieces which fit together to make a hexagon
or other shape. Two edges match if a question on
one matches the answer on the other; figure 1 shows
an example of a completed jigsaw. These can be
used within classrooms to help make learning more
engaging and enjoyable. For example, some students
feel disengaged by having to continuously write in
mathematics lessons. Students may well attempt
many more questions than normal and participate
more willingly when solving a jigsaw puzzle than
when answering textbook questions. It is also dif-
ferent from working with a computer-based activity
in that it is more physical and can easily involve an
element of collaboration with classmates.

Jigsaws can also be used to develop certain log-
ical thinking skills. For example, some questions
could have the same answer, so that students would
have to realise this and determine which one of the
possible pieces fits all of the constraints. There can
also be blanks or ‘?’ symbols used to indicate that an
answer has been left out. Deliberate mistakes could
be introduced to raise the level of challenge. Finally,
the edges could be used to introduce distractors (as
in the example shown), or they could be left blank,
or they could be used to spell out a relevant word,
phrase or sentence.

While the Jigsaw 2005 software was originally
designed for use in the mathematics classroom, the
same puzzle structure could easily be used to assist
in learning languages, scientific facts, and so on.

10
0
0

10
23 ÷

10
21

108

1

1
3
3

100

9 4×
9 5

3

(3
2)

2

39

99

2

81

6×6
2

13 2× 13

6

1
0

216

24
÷26

5

10
6
÷

10
3

−1

1
4

4

Figure 1: A small completed jigsaw

In addition to jigsaws, the software also offered
dominoes, where each card has an answer and an-
other question; these then match up to create a
domino chain. Another type is a card sort, where
a set of cards is to be sorted either into order (for
example, a proof of the irrationality of

√
2 or the

derivation of the formula for solving quadratic equa-
tions), or into groups (for example, “Which of these
statements are always true, which are sometimes
true, and which are never true?”).

The Jigsaw 2005 software was distributed to
all UK schools and colleges with 16–18 year-old stu-
dents as part of a project to improve the quality
of mathematics learning. Since then, the software
has been further developed, and is now freely avail-
able as Formulator Tarsia [3] (though it is not open
source). Hundreds of classroom activities have now
been written using this software.

The Formulator Tarsia software is Windows-
based, and every question–answer pair is entered
on a separate input screen. There are keyboard
shortcuts available, but even having learnt them all,
there is still a fair amount of mouse-work required
to enter the questions. One also has to switch to
different ‘tabs’ to see an overview of all entered pairs.
On the other hand, the software learning-curve is
very gentle, which is a huge bonus for busy teachers:
though it may take time to create each jigsaw, there
is very little up-front time investment required. Also,
the data storage format is XML, with MathML for
the mathematics, so it is potentially possible to edit
the files outside of the software or to export the data.

Julian Gilbey

TUGboat, Volume 35 (2014), No. 2 169

1.2 The desire for a TEX-based system

I am currently developing mathematical resources
for the Cambridge Mathematics Education Project
(CMEP) [2]. We are aiming to provide innovative
resources to help support and inspire teachers of
advanced mathematics for 16–18 year-old students.
In the UK, most of these students will study an
A-level mathematics curriculum, but the material
we are producing can certainly be used in other
teaching situations and for other curricula.

Our build system involves authors writing the
original content in Markdown, which is then con-
verted using pandoc [4] to HTML for viewing and
to LATEX for producing a printable PDF document.
(There are more steps in addition, but this lies at
the heart of the conversion process.)

Among the resources we are developing are a
variety of card-sorting activities, and there is a pos-
sibility that we may also offer some jigsaw activities.
The Tarsia Formulator software does not meet our
needs for a variety of reasons:

• All of our developers use either MacOSX or
GNU/Linux, so it would be hard for us to use
Windows-based software.

• The resources are going to be made available
via the web, so we require a way of having the
content of our cardsorts available both for easy
printing and for viewing online. It would be
painful to have to enter the content from scratch
into both a card-sort creator and a Markdown
document.

• The WYSIWYG input system is quite laborious.

• We like the flexibility of LATEX’s mathematical
typesetting abilities (in spite of the limitations
imposed by using pandoc and MathJax [5]).

• It is desirable to have more fine-grained control
over the output, should that be desired; without
access to the source code, it is very hard to make
any systematic changes to Formulator Tarsia’s
output.

• When an activity has been created in Formula-
tor Tarsia, it seems to be impossible to change
the activity type (say from a triangle-based jig-
saw to a domino puzzle) without either editing
XML files by hand or re-entering all of the data;
it would be much nicer to have a text-based
input file which can simply have its header in-
formation modified appropriately or the content
cut-and-pasted into another document.

• The output quality of the various TEX engines
is superior.

For all of these reasons, I decided to create a
TEX-based solution to address our needs and produce
beautiful resources.

2 The new software

2.1 Design goals

My aim in creating this new software was to build on
the great work that the creators of Formulator Tarsia
had done, while addressing some of the shortcomings
that we had identified above. The audience of this
new software is also crucially different, in that it
assumes its users have both a working knowledge of
LATEX and a TEX system installed. They will also
need to have Python 3 and be able to install some
standard Python modules. (I might endeavour to
make the software compatible with Python 2.7 at
a later stage if I have time and people express an
interest in this.)

The primary design goals were:

• The content should be easy to input using a text
editor (assuming they have a basic knowledge
of LATEX).

• The puzzle layouts should be editable if desired.

• New puzzle types should be easy to create, ide-
ally without having to modify the source code.

• It should be easy to create the printable jigsaws
from the input files.

• There should be sensible defaults which can be
overridden if desired.

• It must be possible to include images in the
puzzles.

• The software must be able to output a Mark-
down version of the puzzle content for including
into our CMEP build process. The precise for-
mat of this must also be customisable.

• The software must be able to run on at least
MacOSX and GNU/Linux, and ideally on Win-
dows too.

• It should be easy to install and use.

• The dependencies should be kept to a minimum
(beyond a working LATEX system).

• It should be easy to maintain (time is always in
short supply).

• It should be possible for the jigsaw pieces to be
automatically numbered.

For the last item, I often found as a teacher
that it was very time-consuming to check whether
a jigsaw puzzle or card sorting activity had been
completed correctly. I would therefore number the
pieces before photocopying a puzzle, to make this
task more efficient. However, I still had to go to
the effort of identifying the pieces in the solution to

Creating (mathematical) jigsaws

170 TUGboat, Volume 35 (2014), No. 2

determine where the numbers would end up. So the
ability to automatically number the pieces, both in
the puzzle and solution, is very desirable. To make
this effective, though, the cards had to be shuffled
randomly for each different puzzle, so as to prevent
the students from ‘solving’ a puzzle just by arranging
the card numbers in some standard order.

A possible additional feature would be to create
some form of graphical data input system, but I have
no immediate plans to do so.

2.2 Implementation overview

The most important files from a user’s perspective are
the data input files. These specify the type of puzzle
(a hexagonal jigsaw or a card sort, for example), any
options for the jigsaw (such as whether to number
the cards or not) and the text to appear on the
puzzle. Sensible defaults are provided for all of the
options if they are not specified. We decided fairly
early on that YAML was a suitable markup language
for writing these files, as it is a very easy format
for humans to read and write, with little “noise”.
It also made more sense to use a standard, well-
known markup language than to create a new one
specifically for this project: it will then be easy for
other software to read the input files or to change
the files to a different format (such as JSON) should
this ever be desired.

The puzzle templates are LATEX files with tem-
plating marks. For the templates I have created, I
have used PGF/TikZ for the graphics and to place the
text items. My initial templates were written when
I was using version 2.10 of PGF/TikZ, as distributed
with TEX Live 2013. However, it turned out that I
ran into a bug related to the placement of text along
cyclic paths, which has been fixed in version 3.0.0
(distributed in TEX Live 2014). It is therefore neces-
sary to have an up-to-date TEX Live distribution (or
at least an up-to-date PGF) for these templates to
work correctly. Alternative templates can be written
if this is desired. For example, someone might prefer
to use Asymptote or another graphical package, or
they may wish to modify the existing templates in
various ways.

There is also a template description file (again
written in YAML) for each puzzle type: this specifies
various parameters required to create the puzzle.

Both of these template types (the puzzle tem-
plates and the description files) are described in detail
in the software documentation.

I wrote the program itself in Python. This was
for a few reasons. Firstly, it is a well-known, popular
language, so if other people wish to become involved
in developing this software, it will be relatively easy

type: smallhexagon

title: An example puzzle

note: 'You will have to work out the

missing number shown as `?'''

pairs:

- ['$10^6\div10^3$', '1000']

- ['$10^{23}\div10^{21}$', '100']

- ['$9^4\times9^5$', '9^9']

- - '$(3^2)^2$'

- puzzletext: '?'

solutiontext: '81'

- ['6×6^2', '216']

- ['$2^4\div2^6$', '$\dfrac{1}{4}$']

edges:

- '-1'

- '10'

- '$13^2\times13$'

- '39'

- '13^3'

- '108'

Figure 2: Example small hexagon puzzle

for them to do so. Secondly, the Python interpreter is
easy to install on the major platforms people will be
using. Furthermore, since the software is written in
pure Python, it does not require compilation, making
things a little simpler to install. Finally, it provided
me with an opportunity to learn more about this
language: as I have learnt more about Python, I
have improved my code and made it more idiomatic.
The code is currently written in Python 3.x; if I have
time and people express an interest, I will endeavour
to make it compatible with Python 2.7.

To create the jigsaws, the jigsaw generator pro-
gram is run over the data file. It reads this file along
with the relevant template description file and puzzle
template files. It then fills in the puzzle templates
with the puzzle data to create LATEX files (and Mark-
down files too, if requested). The LATEX files are
then processed with pdfLATEX (or some other LATEX
variant) to create PDFs for printing.

2.3 An example data file

Figure 2 shows the YAML puzzle file which was used
to create the example shown in figure 1 above (with
some small modifications).

The file begins with some metadata:

• the type of the puzzle: in this case, it is a ‘small-
hexagon’ puzzle, which consists of six triangles;

• the title of the puzzle, which is optional, and

• an optional note, which is printed above the
puzzle.

Julian Gilbey

TUGboat, Volume 35 (2014), No. 2 171

The existing jigsaw types at the time of writing
are hexagon, smallhexagon, triangle and parquet;
there are a few more in the pipeline, too. It is also
possible to write one’s own jigsaw types, as long as
they consist of equilateral triangles and squares. (To
write templates using different shapes would require
extensions to the software itself; I may do this in
the future.) In addition, there are three more types,
cards, cardsort and dominoes, which are described
briefly later.

The next section of the file specifies the data.
There are two parts here: the pairs data, which
lists question and answer pairs, and the edges data,
which specifies the text to appear on the edges in
an anticlockwise direction. Each pair is a sequence
of two items, the question and the answer, whereas
each edge consists of just a single item.

Each item is usually just a single string. How-
ever, there is a possibility of ‘hiding’ text in the
puzzle. This means either leaving a blank where
the text should appear or writing something else in
its place. The fourth question–answer pair in the
above example illustrates this. This pair is writ-
ten using YAML ‘block style’ for clarity, that is, the
question and answer are written on separate equally-
indented lines. The question is just a plain string
('$(3^2)^2$'), whereas the answer is a mapping
with two entries: the puzzletext appears in the
puzzle, while the solutiontext appears in the solu-
tion. This feature could be used as in the example
shown, or it could be used to introduce deliberate
mistakes in the puzzle, increasing the level of diffi-
culty for the students. There is also an alternative
notation available to simply hide the text in the
puzzle, which is described in the documentation.

If a puzzle does include such hidden text, then
the solution highlights these occurrences; in the de-
fault templates, these are shown with a yellow back-
ground.

It is also possible to include images in the items
or to change the text size of individual items or all
items. The details are described in the documenta-
tion.

2.3.1 Some notes on YAML syntax

For a full, precise description of YAML syntax, see
the YAML Specification [1]. What follows is a very
brief summary of some of the basic parts of the spec-
ification which should be sufficient for most people’s
needs when using this software.

Although YAML allows unquoted strings in gen-
eral, there are a number of restrictions on what is
permitted in them. For this reason, it may be sim-
plest to single-quote all value strings. (YAML also

offers double-quoted strings, but these interpolate
backslash-escapes; this is probably undesirable in
this context, since many TEX expressions include
backslashes.)

Within a single-quoted string, a single quote
is written as a doubled quote mark (''), hence the
three quote marks in a row at the end of the note
field in the above example (two to indicate a quote,
and the third to end the string).

For collections (‘sequences’ and ‘mappings’ in
YAML’s terminology, each of which consists of a num-
ber of ‘entries’), YAML allows two different notations:
either a flow style, which is similar to JSON notation,
or a block style. With the flow style, the entries of a
sequence, such as a question–answer pair or the list of
edges, are enclosed in square brackets and separated
by commas; for the block style, each entry appears on
a new line preceded by a vertically-aligned hyphen.

Similarly, for a mapping the entries consist of
key–value pairs, with the key and value separated
by a colon. They can be written either using a flow
style as a comma-separated list enclosed in braces,
or with a block style by writing each key–value pair
on an identically-indented new line.

Both of the sequence styles appear in the ex-
ample here, though only the block style is used for
mappings. Note also that the top-level structure of
the file is itself a mapping. This means that the
entries (type, title, pairs, and so on) can appear in
any order. However, for the benefit of the human
reader, it is wise to maintain a meaningful order to
these entries.

2.4 Card sorts and dominoes

As mentioned above, this software also offers some
other types of activities: card sorts and dominoes.

A domino puzzle is just a collection of question–
answer pairs which are laid out on a series of domi-
noes. Each domino consists of an answer and a new
question. The dominoes can then be laid out to
create a complete chain (beginning with ‘Start’ and
ending with ‘Finish’) or loop (if ‘Start’ and ‘Finish’
are not present), with each question matching its
corresponding answer. The data file used to create
this is very similar to the example shown above, only
the type is now dominoes. Within the data file, it
is also possible to specify various options such as
how many dominoes should appear on a page and
whether the cards should form a loop or chain; these
are described in more detail in the documentation.

A card sort is simply a collection of cards which
are to be sorted in some way. For the cardsort

type, the aim is to sort the cards into the correct
order, and so the cards are shuffled for the puzzle

Creating (mathematical) jigsaws

172 TUGboat, Volume 35 (2014), No. 2

and a solution is also produced by default. For the
cards type, on the other hand, there is no canonical
order (for example: “Arrange these cards into order
of importance to you” in a politics lesson), and so no
solution is produced, nor are the cards shuffled by de-
fault. Again, the data file is very similar in structure,
and details can be found in the documentation.

Both cards and dominoes offer the possibility
of having some form of title on the cards, and cards
have a further option of having labels on individual
cards. (This was introduced into the software when
we wanted to create an activity which had different
categories of cards; the categories were then written
on the cards.) Additional options are discussed in
the documentation.

2.5 Markdown output

As explained in section 1.2, our requirements include
the need to output a Markdown version of cards
data for inclusion into our build system; from there,
it is translated into HTML. Our current system re-
quires each card to be embedded in an HTML <div>

element. The cards are then displayed in an appropri-
ate way using some simple CSS. Since pandoc passes
any HTML <div> elements in a Markdown file to the
HTML output unchanged, we simply need a Mark-
down file with the <div> elements already present for
our card sorts. I have therefore created a Markdown
template file which places the card content within
these elements.

For other needs, it is perfectly straightforward
to create alternative Markdown templates, which
could then be converted into the required HTML.
For example, with the appropriate JavaScript and
supporting CSS, it would be entirely feasible to create
an interactive version of the card sort or jigsaw from
the same data file. While we have not yet done this,
it would be a very interesting next step.

3 Status of the software

As the time of writing, the software is in alpha state.
It is currently able to produce jigsaws and card sorts
in all of the ways discussed in this article. There
are a few key issues outstanding, which should be
resolved in the very near future, including:

• creation of an installable Python package;

• handling command-line options;

• the ability to read a configuration file, specifying
such things as the flavour of LATEX to use;

• offering the ability to read user-defined template
files, and

• writing the full user documentation.

Once these are done, I will consider the software
to be in either beta or release-ready state. I welcome
feedback and any suggestions for improvements or en-
hancements, as well as stories of how it has been used.

3.1 Obtaining the software

The software can be downloaded from GitHub; the
repository is https://github.com/juliangilbey/

jigsaw-generator. At the time of writing, the sim-
plest way to obtain it is to use git to clone the
repository. As mentioned above, I intend there to
be an installable Python package by the time this
article is published. It might then be appropriate
to upload this package to CTAN. Information about
this will be posted on the GitHub site.

Acknowledgements

I thank those who offered very useful ideas and feed-
back at the TEX Users Group conference; these have
helped me to solve some of the thorny issues I had
been facing.

References

[1] Oren Ben-Kiki, Clark Evans, and Ingy döt
Net. YAML Specification. Available from
http://www.yaml.org/spec/1.2/spec.html.

[2] Cambridge Mathematics Education Project.
http://www.maths.cam.ac.uk/cmep/.

[3] Hermitech Laboratory. Formulator Tarsia.
Available from http://www.mmlsoft.com/

index.php/products/tarsia.

[4] John MacFarlane. The Pandoc universal
document converter. Available from http:

//johnmacfarlane.net/pandoc/index.html.

[5] MathJax Consortium. MathJax. Available from
http://www.mathjax.org/.

� Julian Gilbey
Department of Pure Mathematics

and Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
England
J.Gilbey (at) maths dot cam dot

ac dot uk

jdg (at) debian dot org

Julian Gilbey

https://github.com/juliangilbey/jigsaw-generator
https://github.com/juliangilbey/jigsaw-generator
http://www.yaml.org/spec/1.2/spec.html
http://www.maths.cam.ac.uk/cmep/
http://www.mmlsoft.com/index.php/products/tarsia
http://www.mmlsoft.com/index.php/products/tarsia
http://johnmacfarlane.net/pandoc/index.html
http://johnmacfarlane.net/pandoc/index.html
http://www.mathjax.org/

	Background
	History and benefits of (mathematical) jigsaw puzzle software
	The desire for a TeX-based system

	The new software
	Design goals
	Implementation overview
	An example data file
	Some notes on YAML syntax

	Card sorts and dominoes
	Markdown output

	Status of the software
	Obtaining the software

