
TUGboat, Volume 36 (2015), No. 2 123

DocCenter—TEXing 11 million documents
a year

Joachim Schrod

1 TEX goes banking

Our company’s product DocCenter is used to man-
age the standardized, corporate identity (CI) confor-
mant, written communication of a company. Our
reference customer is 1822direkt,1 a German online
bank, which uses it to handle almost all written com-
munication with its customers. Some communication
is done via email or displayed as HTML messages
in an online postbox, but most is created via LATEX
and then printed or provided as PDF.

This experience report presents input methods,
output formats, and delivery channels used by our
customer. It also reports on related challenges and
TEXnical solutions chosen.

But first things first: What is special about
customer related documents of an online bank?

• They are small, mostly one or two pages.

• They are simple documents that don’t need lots
of markup, just some item lists, some fontifying,
and some simple tables are sufficient.

• Few images are used, and those are not individ-
ually created for an individual document.

• All documents are obliged to use the company’s
corporate identity formatting rules; it should be
hard for an author to break them.

• There are no reports, no books, no highly struc-
tured documents, no math — any use case where
(LA)TEX is usually the first choice and what TEX
experience reports are usually about is missing
here.

So, small documents — but there are many of them;
last year DocCenter was used to create 11 million of
them! Quite a lot of the documents are letters:

• either with standardized content and a few fill-in
variable parts

• or completely individual content

• or built from pre-defined text fragments

Even though the content itself is simple, it has
to be enriched by corporate identity requirements,
demands for standardized greetings and closings, au-
tomated addition of signatures of writer and de-
partment heads, footnotes with ever-changing adver-
tisements for special opportunities, logos of current
ratings from financial journals, etc. This enrichment
is standardized and delivered by appropriate LATEX

1 1822direkt is the online sales company of Frankfurter
Sparkasse 1822.

Figure 1: Standard letter input form (cropped).

Figure 2: Individual letter input form (cropped).

document classes; the content authors don’t need to
worry about it.

In fact, the letter idiom is also used for account
statements, credit card statements, and share notes.
In fact, these are the majority of documents pro-
duced. These kinds of documents also often have
special requirements concerning delivery, users may
need to acknowledge the receipt, a printed version
may be needed to be sent by post if no such acknowl-
edgement arrives in due time.

Some other documents add additional require-
ments. A good example are PIN/TAN letters that
must be kept private: they are printed on special
paper only on certain in-house printers, they must
be archived without the “secret part”, etc.

2 DocCenter

As the introduction mentioned, we have two kinds
of documents that are created with DocCenter:
(1) letters that are created by staff members, and
(2) automatically created documents.

2.1 Document creation by humans

DocCenter provides a web-based intranet application
to create documents by staff members. Figures 1
and 2 show the basic interface.

DocCenter — TEXing 11 million documents a year



124 TUGboat, Volume 36 (2015), No. 2

Standardized letters are created by application
forms that request only the variable parts. No letter
content is shown during input of these document
parameters, and it’s not needed either: Staffers write
those letters by the dozens or even hundreds; they
know the letter’s content by heart. Input must be
quick and must be checked as closely as possible.

E.g., the author need not input a customer’s
name, or address, or account details — they are all
available to be inserted into the letter content after
the customer’s account number has been input in the
form. The actual letter content comes from so-called
templates. We postpone describing their content
creation to section 2.4, as the same templates are
used for automatic document creation as well.

A preview is available to check final output —
but most often it is not used. Users rely on proper
document creation; they need to get the letters out
in the most efficient way.

Individual letters may also be created, with boil-
erplate text parts available to ease that duty. For
that task an HTML editor, TinyMCE, is integrated.
That editor is configured to provide only formatting
capabilities that are CI-conformant. The editor’s
XHTML result is then converted to LATEX and out-
put over the chosen channel.

Users of this “frontend” to DocCenter work on a
few small documents at a time, and expect very fast
system reaction time, both for preview and output
creation. This speed aspect is called latency : Docu-
ment generation and formatting on the server must
happen fast, with results delivered very quickly.

2.2 Automatic document creation

DocCenter provides an HTTP interface to create jobs
with documents. Most prominently, that interface
is used for automated document mass production.
Those documents are still small, but tens of thou-
sands may be requested in one job.

Such a job’s document requests don’t include
the content to be output. They name a document
template which determines the content or how the
content is to be generated. Document parameters
in the request configure output or content creation.
Other request attributes establish the output channel
to be used, e.g., printer, online PDF delivery, transfer
to a print shop, or others.

Since this interface is not used by humans, quick
reaction time is not important. On the other hand,
it is important that jobs are finished in some pre-
determined given time. E.g., when account or credit
card statements are created for all customers once a
month, there are service level agreements to fulfill —

these statements must be delivered to the customer
by a specified date.

This is a different kind of performance demand
than the requirement of low latency for interactive
usage: Commonly called throughput, it is concerned
with overall processing time for a given set of doc-
uments, not about the processing time for a single
document.

2.3 Basic architecture

DocCenter uses basically a 4-step lifecycle of docu-
ment processing that provides a maximum of stability
and control:

generate ⇒ format ⇒ output ⇒ archive

Document variants are used to provide needed spe-
cialization for one or several of those phases. The
most important are variations of document genera-
tion. They are implemented as plugin classes that
may be added to the system as needed. Thus, new
demands for specific content generation or format-
ting can be satisfied easily by realizing and deploying
a new plugin, without changing the base system.

Some illustrations:

Account statements use a specific generation step
that fetches account data from the database; a
document’s LATEX markup is created completely
by the application.

Standardized letters generate a LATEX document
file that merely contains parameter declarations
and then inputs a LATEX template file that may
use the parameters. (Those parameters are ba-
sically macro declarations.)

Individual letters transform XHTML content to
LATEX markup and content during generation;
XSLT is used for that.

PIN letters don’t archive the actual PIN, just the
letter text. Thus bank personnel later can see
when a PIN letter was sent to which person, but
not the actual secret initial PIN data.

Other document variants provide further specializa-
tions that are even more company-specific. Realiza-
tion of such document variants is the primary method
for adapting DocCenter to different customers’ de-
mands.

2.4 LATEX templates

Standardized letters are by far the most typical doc-
ument that are created by DocCenter — not by doc-
ument numbers, account statements dwarf that —
but by variety that is handled smoothly with our
application.

Within a bank, new content for a letter may not
be easily created by a staff member on a personal

Joachim Schrod



TUGboat, Volume 36 (2015), No. 2 125

whim. Professional content (correct terms, factual
correctness) is provided by one organizational unit,
another checks that CI-style conformant phrases are
used, while wording is checked by a third one. Each
new letter and each change must go through the
required protocols and have approvals recorded, to
be available for inspection by auditors.

For that reason, actual document content is
created and managed by an editorial team that orga-
nizes the process and coordinates the different groups
that are involved. This editorial team actually cre-
ates LATEX and XML files with meta-information;
no interactive frontend is involved that hides that
technology.

An advantage that we did not hesitate to ex-
ploit is the simple document structure. TEX, and
subsequently LATEX, assigns special functionality to
many characters, be it $ to introduce math mode,
% to start a comment, or other characters used to
make markup of complex documents more readable.
Well, we don’t have complex documents, we’ve got
no math to typeset, and comments in documents are
an alien concept that’s hard to communicate to staff
members anyhow. On the other hand, not being able
to simply type $ or % in a letter from a bank to get
the respective characters in the output — that’s a
difficult restriction for this kind of user.

For these reasons, we reconfigured LATEX a bit
and added application-specific markup that supports
creating simple documents in a way that can easily
be learned by non-TEXies while still being LATEX:

• Very simple LATEX
• No math
• A minimum of special characters: just \ { }

• In particular, $ and % are normal characters,
lest they create havoc in our banking context
• Insert document parameters, with optional

formatting
• Optional text, controlled by parameters
• Some additional special environments; e.g.,

creating a pre-filled answer letter to the bank
that is appended to the actual letter.

From the usual TEX point of view, these would hinder
creating reports or longer documents. For our target
use case, creating letters, such a reasonable subset
of LATEX functionality enables users to create new
standard letter templates within hours, without a
steep learning curve. (The few hours are actually
spent by learning what metadata is needed and how
to express it, not by creating real content.)

3 Challenges

Document creation in the context described above
comes with some unusual challenges. Solutions are

readily available in the TEX world, if we look be-
yond common knowledge of how a contemporary
TEX system is used.

3.1 Output variations without reformatting

DocCenter has to be able to output formatted results
via different output channels:

• PDF, to be delivered online to the customer

• Printed in-house, on both PostScript and PCL

printers

• Print files for external print shop

Output is not the same for these output channels:

• Online PDF usually needs an embedded letter-
head, provided as an image.

• Print output uses letterhead paper; thus a let-
terhead image must not be embedded.

• Documents use different types of paper; e.g., first
page on letterhead paper, second page on white
paper, maybe third page again on letterhead
paper.

• Printer-specific tray control: Each printer may
have paper types in different trays; using the
right paper type as per requirement above must
thus be configured and realized per printer.

• Printer calibration: Precise output positioning
is important for letters, address fields must fit
exactly into window envelopes.

– Each laser printer feeds paper a bit differ-
ently, output doesn’t end up on the page
where it should be.

– Experience shows that different printers
may stray up to 5mm (0.2in) in all direc-
tions; while positioning errors for different
sheets in one printer is a magnitude lower.

– Therefore we need a per printer configu-
ration (again) that offsets output on the
page.

• Folding machine control: Output on some spe-
cial printers is fed immediately to a folding ma-
chine that controls the completion of all of a
letter’s pages, folds them, and places them into
an envelope. This is controlled by bar codes at
the paper’s left edge — these bar codes only have
to be inserted when printed on these printers,
not for any other output channel.

• Print shops need associated metadata (some
want them embedded invisibly into PDF files)
for paper type control.

• Some print shops always print duplex; extra
empty pages may have to be inserted for them.

DocCenter — TEXing 11 million documents a year



126 TUGboat, Volume 36 (2015), No. 2

• Preview output needs watermarks (grey “draft”
in the background), to make sure that the four-
eyes control workflow cannot be easily circum-
vented.

• Output of archived documents again needs a
watermark, to distinguish original documents
sent to the customer from internally produced
copies.

• Some letters are archived incompletely, e.g., se-
cret PIN numbers must not be stored. One
should still be able to have a partial view of the
archived document, without that secret part.

But the biggest issue of all is the requirement
that output of a document may have to be repeated
on a different output channel after months or even
years — taking the peculiar requirements above into
account — without reformatting the document. Re-
formatting a document after several years always
has the risk that the output may be different, owing
to changed LATEX packages or other internal macro
changes. That must not happen; precisely the same
document has to be reproduced.

Therefore, to separate format from output phase
in DocCenter’s document life cycle doesn’t just mean
that a formatted result, e.g., a PDF file, is sent
to some output device. Instead, the output phase
transforms the formatting result and implements the
output channel specific requirements.

The current standard in TEX world for output
format is PDF. Almost all current publications and
presentations at conferences take that for granted.
While we could realize all this output phase ma-
nipulation by transforming TEX-produced PDF files,
the overall TEX universe has an older technology
available that’s better suited for our purpose:

DVI files with \specials

TEX specials are used in the DVI format result
to declare the need for duplex/simplex, letterheads,
paper types, watermarks, etc. DVI drivers interpret
them and produce adequate printer-specific output.

As an example, printer-specific tray control is
as easy as setting up directories with include files
with standardized names; these include files contain
printer control commands to access trays for the
correct paper type. Inclusion of these files is triggered
by appropriate \specials in the document.

Printer-specific output placement is even easier
to realize: Every DVI driver has options for offset
control, a configuration file per printer has values for
that option.

Last, but not least, using DVI greatly lowers
cost for our document archive. A typical letter with
roughly 40KB in PDF format needs only 2KB in DVI

format. The disk space requirement is thus reduced
from 500GB per year to 25GB per year. This doesn’t
sound much in terms of today’s USB storage prices
where you get multiple TBs for cheap — but you can’t
use such inexpensive storage easily in a bank’s data
center. There it still matters if a 10-year storage
archive needs 10TB or 1TB.

3.2 Latency improvement

Before DocCenter was deployed, a predecessor system
was used that was also based on LATEX. With a rather
naive implementation, that needed 1.5 seconds to
process a document. Adding the communication
latency, delivering a preview from server to user
needed up to 3–4 seconds, clearly far too long.

Root cause analysis showed us the reasons for
that behavior: Most of the time was spent in boiler-
plate processing: reading and processing LATEX class
and package files, font configurations, etc. Creating a
letter with two paragraphs of text needed processing
more than a dozen macro files. Actual time for for-
matting the document’s content was minimal. (SSD
disk caches might have helped, but were not readily
available in the clustered server architecture that is
in use at the customer.) Additional time was spent
by processing each document twice, as is common
document production practice in the TEX world.

Well, that problem was easily tackled with stan-
dard TEX techniques from the early ages: We don’t
have document-specific packages, and our documents
are not one-off creations. Instead, all of our 11 mil-
lion documents use the same set of packages, maybe
with some small variation in feature usage. So we
created a TEX format file that has LATEX and all used
packages and font definitions preloaded. The format
also redefines \documentclass and other preamble
control sequences to do nothing — class and package
files are already loaded, after all.

A second measure was to stop processing doc-
uments twice. Analysis showed that we don’t need
any of LATEX’s features, like cross references, that
demand multiple formatting runs. Processing each
document once is sufficient.

Reading a format file is very fast in TEX, be-
ing the equivalent of a memory dump. Document
formatting time was reduced from 1.5 seconds per
documents to 0.06 seconds per document; a 25 x im-
provement by using our specific FMT file and doing
only one run.

3.3 Throughput improvement

Creating account statements was another challenge.
The predecessor system used a tabular layout, as
is common with such statements, implemented via

Joachim Schrod



TUGboat, Volume 36 (2015), No. 2 127

LATEX’s longtable package. Each of the hundreds of
thousands of statements that had to be produced
was created separately, with a new database con-
nection and queries, creation of a new LATEX file,
running LATEX twice (owing to usage of longtable),
and creation of output files for the customer.

To achieve a service level of maximum processing
time of 24 hours, the creation process was spread over
10 systems where it needed a total time of 22 hours.
At least half of that time could be attributed to
non-optimal usage of TEX technology.

Our first observation was that “looks like a table”
doesn’t mean that it is a longtable or even a tabu-
lar environment in LATEX markup parlance. Bank
statement layout is not at all flexible; column widths
are preset and don’t change with content. There are
some running heads at page breaks, but they don’t
demand the full power of complex table formatting
capabilities.

Instead, we turn towards the most basic format-
ting capability TEX has: \hbox and \vbox. Nothing
is faster in TEX formatting than using these prim-
itives. A booking entry in the statement is not a
table line with columns, it’s an \hbox that contains
\vboxes with fixed widths. Voilà, blindingly fast
processing by TEX is the result.

Our second observation was, again, the overhead
of boilerplate processing for all these document files,
as mentioned in the previous section. For this use
case, we optimized it even further, beyond using our
own FMT file. We generate markup and content
for ca. 50,000 documents in one run and feed them
directly to LATEX, without any intervening process.
LATEX then dutifully produces a DVI file with 200,000–
250,000 pages.

The choice of DVI files to represent our format-
ted result comes in quite handy now. In a DVI file,
pages are linked from the back to the start. The first
10 TEX counters are stored at such a page start. Our
macros store a document ID in one of these counters
and so we can detect the start of a new document
while jumping from one page to the next. Splitting
the single DVI file into 50,000 smaller ones is thus a
matter of less than a second, mostly dominated by
I/O times on the networked storage in use in such
clustered environments.

An interesting point from a TEX point of view
is a further optimization that made splitting much
easier. A hairy detail of DVI file splitting is the
declaration of fonts: they appear at first use and
at the end of the file. Rather complicated logic is
needed for an arbitrary split algorithm to handle that
properly. However, since we are in such a restricted
use case scenario, we can add a first page that does

nothing but load all fonts needed. Our DVI-splitting
algorithm collects all font definitions from that first
page, to be output to every produced DVI file at
the start, and then may append DVI pages from the
respective document without having to worry about
appearance of font definitions at all. This makes
the split code size really small, robust, and easy to
maintain — much easier than comparable code for
splitting a large PDF file.

Using this production approach has proved a full
success: We achieved a performance improvement of
a factor of 100. All statements can be created on
one system within 2 hours.

4 Conclusion

Using TEX as the centerpiece for document creation
in DocCenter was a full success. We have a robust
application that’s purring on without production
problems in that area. Traditional TEX toolbox so-
lutions like DVI files, specials, FMT files and the like
are still immensely useful for the diversified require-
ments of document generation, even in today’s com-
munication demands. It will still work in 10 years, of
great importance for a bank. What other typesetting
system can say the same?

Still, there were some minor hurdles that we had
to overcome:

• A standardized and stable API for TEX process-
ing is missing. While it’s accepted that TEX
is hard to handle by humans, it’s also hard to
control by an application.

• Most important, batch mode and error message
handling are not perfect for monitoring.

• On the organizational side, there is no staff easily
available with sufficient knowledge of (LA)TEX
technology — personnel for support tasks is even
harder to find than for development.

• Customer-specified special formatting for indi-
vidual documents and one-off-changes are diffi-
cult to achieve on-site by the customer’s editorial
group, without our involvement.

• Quality of DVI drivers is worse than 15 years
ago. (dvips is the exception.)

But these issues shouldn’t stop you from using TEX
for similar tasks. Other typesetting systems will
come with their own problems, and more of it — we
have the scars to prove it, but that’s another story.

� Joachim Schrod
Net & Publication Consultance GmbH
jschrod (at) acm dot org

DocCenter — TEXing 11 million documents a year


