
214 TUGboat, Volume 37 (2016), No. 2

Zebrackets: A score of years and delimiters

Michael Cohen, Blanca Mancilla and
John Plaice

1 Introduction

In this paper, we present the resurrection of the
Zebrackets project, originally initiated by the first
author 20 years ago, with which parentheses and
brackets are zebra-striped with context information.
There are two reasons for this innovation: first, to
improve visual presentation of the necessary lineariza-
tion of hierarchical structures in text, and second,
to make a first step away from the assumption that
documents must be built up from a set of unchanging
atoms called characters.

Parentheses and other pairwise delimiters are im-
portant because they are the primary way by which
text, which is serialized, can denote higher-order
dimensionality. For example, two-dimensional struc-

tures can be directly expressed, as in

(
a11 a12
a21 a22

)
.

For 2D data structures such as matrices, such graph-
ical expression is natural, but unnecessary, as se-
rial expression is logically equivalent, albeit less
perspicuous, as in ((a11 a12) (a21 a22)), and gen-
eralizable to arbitrary rank and dimension, as in
(a1 (a21 a22) (a31 (a321 a322))). Such notation usu-
ally assumes “row-major” order, in which the hori-
zontal index changes fastest in a canonical (depth-
first) enumeration. This convention can be made
explicit, by introducing grouping delimiters, as in(

(a11 a12)
(a21 a22)

)
. The transpose (“column-major”)

representation, is given by

((
a11
a12

) (
a21
a22

))
.

Zebrackets1 were originally developed more than
a score (20) of years ago, demonstrating the ex-
pressive power of microarticulated glyphs �Coh92�
	Coh93� �Coh94�. The basic idea is to allow parenthe-
ses �Len91� and square brackets to take on stripes
and slits (“poles ’n’ holes”) to carry extended infor-
mation, such as functional rôle, logical position, and
nesting level in an expression. Pairwise delimiters are
“scored”, by cutting aligned typographical grooves,
to associate balanced mates and ease visual parsing.

Below, we show one possible scoring of this sam-
ple text:

[(a [b (c) d] [e (f) g]) (a [b (c) d] [e (f) g])]

Here it is, with greatly magnified brackets and paren-
theses:

1 The name, suggested by Bob Alverson, is a play on words
as the delimiters resemble zebra stripes: �ze�bra�kets�.

��a�b�c# d"�e�f% g$!

�a�b�c(d'	e
f* g)&
Table 1 shows a number of examples of the use

of the Zebrackets infrastructure on the same sample
text.

The intervening score of years has not been es-
pecially kind to the original implementation: it was
hardly sturdier than a “paper-clips and bubble-gum”
contraption in the first place, and the slide into dep-
recation and disuse of METAFONT, accelerated by
the emergence of PDF as the interchange format of
choice, which cannot natively use characters gener-
ated by METAFONT, hastened the obsolescence of the
Zebrackets prototype. Adobe’s “Multiple Masters”
(such as Adobe Sans and Adobe Serif) and Apple’s
TrueType GX were similarly ahead of their time,
and failed to achieve critical mass and widespread
adoption. Jacques André’s contextual fonts, dynamic
fonts �AO89� �AB89�, and Scrabble font �And90� were
Type 3, so also withered.

Nevertheless, we believe that the principles un-
derlying the system are still valid. There is a huge
multidimensional space of potential characters and
glyphs, too big to be precompiled, and so a lazy,
demand-driven, image-time generation, both of fonts
and glyphs, with caching or memoization, as is used
in dynamic programming, is the only practicable
solution. Contemporary assumptions about fonts
do not allow this possibility �Har07�, so reviving the
existing implementation strategy is still of relevance.
The presentation here presents the font structure,
and the use, both implicit and explicit, of these fonts.

2 The fonts

The Zebrackets project relies on a set of fonts gener-
ated from the METAFONT version of the Computer
Modern fonts. The names of the fonts are all of the
form z(a)(b)(c)(d)(e), where:

(a) is a single letter, either ‘b’ or ‘p’; the font con-
tains either all brackets (b) or all parenthe-
ses (p).

(b) is a single letter, one of ‘b’, ‘f’, or ‘h’; the marks
in the font are all either slots (b for background),
ticks (f for foreground), or ticks within slots
(h for hybrid).

(c) is a single letter, one of ‘a’ through ’h’; the font
will contain 2m pairs of left and right delimiters,

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 215

Table 1: Stripes, slits, and slots: Examples of zebrackets with various arguments.
Each zebracket has a set of slots (here computed automatically), which can be striped
according to the chosen style: plain “foreground” stripes (style ‘f’ in the table); more
subtle, erasing “background” slits (style ‘b’); or “hybrid” (style ‘h’), which creates a
slit for each slot, then places foreground stripes on top thereof. Stripes generation can
automatically count unique pairs or track nesting depth, or count unique pairs at a
given depth (“breadth”). The encoding can be unary, binary, or “demultiplexing”,
up through the maximum as calculated by initial pass of a parser. Note that all
encodings have 0 as origin, but the rendered index origin can be changed to unity.

encoding style index = unique index = depth index = breadth

b �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��
unary f �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��

h �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��

b �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��
binary f �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��

h �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��

b �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��
demux f �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��

h �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g�� �a �b �c� d� �e �f� g��

Table 2: Font zphecmr12.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � � � � � � � �

� 	
 � � � �

1 � � � � � � � �

� � � � � � � �

Table 3: Font zbfdcmtt12.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � � � � � � � �

� 	
 � � � �

Table 4: Font zphecmr12, magnification 2.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � � � � � � � �
� 	
 � � � �

1 � � � � � � � �
� � � � � � � �

Zebrackets: A score of years and delimiters

216 TUGboat, Volume 37 (2016), No. 2

Table 5: Font zphecmr12, magnification 4.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � � � � � � � �
� 	
 � � � �

1 � � � � � � � �
� � � � � � � �

with m ∈ 0..7, where a corresponds to m = 0
(i.e., 1 pair or 2 glyphs), b corresponds to m = 1
(i.e., 2 pairs or 4 glyphs), . . . , and h corresponds
to m = 7 (i.e., 128 pairs or 256 glyphs).

(d) is the name of a Computer Modern font family,
such as ‘cmr’.

(e) is a font size, such as ‘10’.

We consider two examples. In the first example,
font zphecmr12 (Table 2) was generated by calling
the zebraFont.py script with arguments specifying
parentheses striped in a hybrid visual style across 4
slots, using 12 pt Computer Modern Roman as the
base:

python3 zebrackets/zebraFont.py

--kind parenthesis --style hybrid

--slots 4 --size 12 --family cmr

The font contains exactly 24+1 = 32 = 0x20

parentheses. In the first half of the table, for i ∈
0x00 .. 0x0F, glyph i is an opening (left) parenthesis,
encoding i as a binary number with ticks placed in
four always-drawn slots. Similarly, in the second half
of the table, for i ∈ 0x10 .. 0x1F, glyph i is a closing
(right) parenthesis encoding (i− 0x10) as a binary
number.

In the second example, font zbfdcmtt12 (Ta-
ble 3) was generated by:

python3 zebrackets/zebraFont.py

--kind bracket --style foreground

--slots 3 --size 12 --family cmtt

specifying square brackets striped, using a foreground
style, across 3 slots, with the 12 pt typewriter font as
a base. The font contains exactly 23+1 = 16 = 0x10

brackets. For i ∈ 0x00 .. 0x07 across the top of the
table, glyph i is an opening bracket encoding i as
a binary number with ticks placed in three fixed
slots. Similarly, in the bottom half of the table, for
i ∈ 0x08 ..0x0F, glyph i is a closing bracket encoding
(i− 0x08) as a binary number.

The zebraFont.py script generates a new META-
FONT file whose name is the font name followed by
.mf, placing that file in the directory

$TEXMFHOME/fonts/source/public/zbtex

then calling mktextfm on that font name, before
finally calling mktexlsr to add the generated .mf,
.tfm, and .600pk files to the cache for $TEXMFHOME.

Thus, for the second example above, the script
zebraFont.py generates the METAFONT file:

.../source/public/zbtex/zbfdcmtt12.mf

and mktextfm generates files (assuming ljfour is
the default output mode):

.../tfm/public/zbtex/zbfdcmtt12.tfm

.../pk/ljfour/public/zbtex/zbfdcmtt12.600pk

and mktexlsr updates the cache of the list of files:

$TEXMFHOME/ls-R

We can also make magnified versions of these
fonts. Our third example (Table 4) is the zphecmr12

font with magnification 2, which corresponds to TEX
magnification

√
2 ≈ 1.414. The font was generated

by:

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 3 --size 12 --family cmr

--magnification 2

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 217

Our last example (Table 5) shows the same
font with magnification 4, corresponding to TEX
magnification 2. The font was generated by:

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 3 --size 12 --family cmr

--magnification 4

When a magnification argument is passed to
zebraFont.py, the mf-nowin and gftopk scripts are
called to produce larger versions of the fonts. The
magnification argument is multiplied by 600. Hence
we get:

2 .../zbfdcmtt12.1200pk

4 .../zbfdcmtt12.2400pk

8 .../zbfdcmtt12.4800pk

The METAFONT file that is created by the script
zebraFont.py is an eight-line file. It inputs the
base Computer Modern font, sets the parameters
for the number of slots and whether the marks are
foreground, background, or hybrid, then inputs a
file for generating a set of parentheses or a set of
brackets. For example, font zpfbcmr10.mf contains
the following lines:

if unknown cmbase: input cmbase fi

mode_setup;

def generate suffix t = enddef;

input cmr10; font_setup;

let iff = always_iff;

stripes:=1;

foreground:=1;

input zeromanp;

The last file input, by the last line above, is
zeromanp.mf, which is derived from the original
Computer Modern roman.mf (prefixing “ze” to in-
dicate its adaptation to zebrackets). It is one of
four METAFONT files distributed with the Zebrackets
project. The zeromanp.mf file sets some parameters,
then inputs the punctuation file zepunctp.mf, itself
derived from the Computer Modern punct.mf. For
brackets, there are corresponding files zeromanb.mf
and zepunctb.mf.

3 Using the fonts explicitly

There are two ways to use the fonts generated by the
Zebrackets project: explicitly and implicitly. In this
section, we present the explicit approach, and show
how it is used to produce the bibliographic references
of this article.

Suppose that a font zbfhcmr10 has been gener-
ated and we wish to use it. Then we need to declare
the font and its size with a line like this — the J

encodes size 10 and the A encodes magnification 1:

\ifundefined{zbfhcmrJA}

\newfont{\zbfhcmrJA}

{zbfhcmr10 scaled 1000}\fi

Font zbfhcmr10 is a font of 256 brackets, all with
foreground ticks. To < bracket some text ¼ with a
pair of delimiters with four selected ticks (in this
example, using all but two slots at the top and one
at the bottom), the .tex source code can use

{\zbfhcmrJA\symbol{60}} bracket some

text {\zbfhcmrJA\symbol{188}}

since binary 0111100 = 25 + 24 + 23 + 22 = 60 and
128 + 60 = 188.

To hint at the expressive flexibility of such func-
tionality, the bibliographic references of the original
article on Zebrackets 	Coh93� placed a tick for each
page in which a \cite-ation appeared in the left
bracket of the corresponding citation label and a tick
for each page in which a \nocite-ation appeared in
the right bracket.

In this article, we show the same extension
throughout (not just in the bibliographic References
section), with the now explicit convention that should
a document have more than seven pages, then all ref-
erences beyond the seventh page activate the seventh
tick. In the reference 	Coh93�, the activation of the
first and fifth ticks in the opening bracket indicate
that reference’s citation on the 1st page of this paper
as well as here on the 4th page.

Below is some of the code needed for this func-
tionality. There are two counters used as temporary
variables:

\newcounter{bracei}

\newcounter{bracej}

For each citation x, a pair of counters is set up,
ze:x for the left bracket, and zeno:x for the right
bracket. The \zecite macro is like the standard
LATEX \cite macro, but it also calls \zecitation,
which bitwise-ors-in 2p−1 to counter ze:x for the
left bracket, should there be a \zecite{x} on page
number p:

\newcommand{\zecite}[2][]%

{\def\tmp{#1}\ifx\tmp\@empty\cite{#2}%

\else\cite[#1]{#2}\fi

\zecitation{#2}}

\newcommand{\zecitation}[1]%

{\ifundefined{c@ze:#1}%

\newcounter{ze:#1}%

\setcounter{ze:#1}{0}%

\newcounter{zeno:#1}%

\setcounter{zeno:#1}{128}\fi

...

\addtocounter{ze:#1}{...}}

Zebrackets: A score of years and delimiters

218 TUGboat, Volume 37 (2016), No. 2

There are macros corresponding to \nocite, namely
\zenocite and \zenocitation, bitwise-oring-in 2p−1

to counter zeno:x for the right bracket, should there
be a \zenocite{x} on page number p.

Finally, the generation of the \bibitem is ex-
tended, so that

{\zbfhcmrJA\symbol{\arabic{ze:x}}}

appears as the citation’s left bracket, and

{\zbfhcmrJA\symbol{\arabic{zeno:x}}}

appears as its right bracket.

4 Using the fonts implicitly

Although providing an explicit interface to the Ze-
brackets infrastructure provides great flexibility, most
of the time such invocation is “under the hood” and
used implicitly, through the use of pseudo-LATEX
commands appearing in a LATEX document.

A Zebrackets-enabled LATEX file (with conven-
tional extension .zbtex) is passed through a pre-
processor, zebraParser.py, which recognizes four
constructs:

1. \zebracketsfont declares the need for a font,
provoking its creation should it not exist.

2. \zebracketsdefaults sets default values for
the parameters of the other two constructs.

3. \zebracketstext designates text in which the
parentheses and brackets are to be replaced au-
tomatically with zebrackets (including “zeparen-
theses”).

4. \begin{zebrackets} · · · \end{zebrackets}
designates a block of text for the same treatment
as for \zebracketstext.

Because of this precompilation, from .zbtex to .tex,
the workflow for such zebracketed word-smithing is
not as convenient as with, for instance, TeXShop:2

Compilation can be managed in Unix-like shells with
a Makefile to check dependencies and invoke the
required processes, but there is no automatic preview,
synchronization, or other accustomed conveniences.

4.1 The \zebracketsfont instruction

The previous section explained how Zebrackets fonts
are generated by the zebraFont.py script. This
script cannot be called directly from a LATEX doc-
ument, but can be invoked indirectly through the
\zebracketsfont instruction. Consider, for exam-
ple, the following call to zebraFont.py:

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 7 --size 10 --family cmr

--magnification 1

2 http://pages.uoregon.edu/koch/texshop/

The invocation of that call can be made implicitly
in the LATEX document with the following line.

\zebracketsfont[

kind=parenthesis,style=foreground,

slots=7,size=10,family=cmr,

magnification=1]

As a prelude to LATEX compilation, the preprocessing
script zebraParser.py reads and parses this line,
directly calls zebraFont.py with the appropriate
parameters, and removes the line from the LATEX
document, which is exported with the usual .tex file
extension.

One need not include the full set of key–value ar-
guments, as default values can be used (as explained
below). Further, each of the parameter names can
be abbreviated, down to just the first three letters,
and the keyword arguments can also be abbreviated,
as in:

\zebracketsfont[kin=p,sty=f,slo=7,

siz=10,fam=cmr,mag=1]

The \zebracketsfont instruction takes six ar-
guments, which can appear in any order:

1. kind can be either parenthesis (p) or
bracket (b).

2. style can be any one of foreground (f),
background (b), or hybrid (h).

3. slots is a natural number between 0 and 7,
inclusive.

4. size is a natural number for a font size, such
as 10 or 12.

5. family is a Computer Modern font family
name, such as cmr or cmtt.

6. magnification is a natural number between
1 and 32, inclusive, representing the square
of the TEX font magnification, i.e., a power
of
√

2.

4.2 The \zebracketsdefault instruction

If Zebrackets is used extensively within a document,
then a lot of calls thereto are made, perhaps with
similar or even identical parameters. In order to
reduce typing (and introduction of errors), default
values for any of the Zebrackets parameter names
can be assigned.

For example, in the following lines, four fonts
are declared, all of family cmr, size 10. All but one
use parentheses, all but one are foreground style, and
all but one have seven slots.

\zebracketsdefaults

[size=10,family=cmr,

slots=7,kind=parenthesis,

style=foreground]

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 219

\zebracketsfont[]

\zebracketsfont[kind=bracket]

\zebracketsfont[style=background]

\zebracketsfont[slots=1]

4.3 The zebrackets environment

When zebraParser.py is called, whenever it parses
text to be transformed (when the document con-
tains either the \zebracketstext command or the
zebrackets pseudo-LATEX environment), then the
zebraFilter.py script is called. The latter reads
the text, determines what fonts are needed (invok-
ing zebraFont.py, as necessary), then replaces the
brackets and parentheses in the text with font–symbol
pair invocations.

Consider the following example, presented in §3
with explicit font–symbol pairs:

< bracket some text ¼

That example can also be generated implicitly, with
the lines:

\begin{zebrackets}

[style=f,number=60,

slots=7,encoding=binary]

[bracket

some text]

\end{zebrackets}

The number=60,slots=7 specifications in the param-
eter list summons a font using seven slots, from which
glyph 60 (= 25 + 24 + 23 + 22) and its partner 188

(= 27 + 60) are drawn.
For automatic processing, inputs are handled as

follows:

• Parameter index can take one of three possible
values — unique, depth, breadth— as exempli-
fied in Table 1.

• Parameter number overrides the settings for pa-
rameter index. When number is set, all paren-
theses and brackets in the text being processed
get that specific glyph in the font.

• When a value for parameter slots is not pro-
vided, then the number of slots for the fonts is
the minimum needed in order to encode all of
the glyphs for the text (taking into account the
value of the index parameter).

For example,

�a �b �c� d� �e �f� g��

was generated by the lines:

\begin{zebrackets}

[index=depth,enc=unary,style=f]

(a (b (c) d) (e (f) g))

\end{zebrackets}

There are also three additional parameter pairs, each
with two values:

• mixcount=true states there should be a
single counter for striping parentheses and
square brackets; mixcount=false, two distinct
counters.

• origin=0 states that counting starts from
zero; origin=1, from one.

• direction=topdown means that striping
starts from the top of delimiters, whereas
direction=bottomup starts from the bottom.

The automatic striping of delimiters in a region
of text is done with a two-pass algorithm: a) the max-
imal depth and breadth, and the number of distinct
delimiter pairs are computed, in order to determine
the number of distinct slots needed (maximum of 7),
and b) the correct fonts are generated, if need be,
and the correct LATEX source is created.

5 Conclusion

The Zebrackets infrastructure does not assume that
characters are changeless atoms, as standard com-
puting infrastructures do. We consider below this
innovation from several perspectives.

5.1 Representative characters

The idea of characters or words as pictures is of
course not new. Most characters — including Chi-
nese characters, Japanese kana, and the Roman al-
phabet — have origins in pictographic associations,
albeit with prehistoric abbreviations and stylizations
that make the original inspiration obscure or all
but indiscernible. Illuminated manuscripts often em-
bellished initials with vines, flowers, animals, and
other inventions. Almost a century ago, Apollinaire
published books dK25� featuring “calligrams”, in-
stances of “concrete poetry” or “visual poetry”, in
which the typeface and arrangement of words on a
page informs the meaning of a poem as much as the
words themselves. Contemporary typography often
plays with pictorial suggestions KH08�, especially
for special-purpose or display faces.

5.2 Context sensitivity

TEX has always featured non-locality, including “but-
terfly-effect” propagation, in which, for instance, a
seemingly small change at the end of a document
can affect layout at the beginning, especially in the
presence of floating figures and tables. However,
such effects are large-scale, macroscopic, rearranging
the glyphs, but not mutating the glyphs themselves.
Zebrackets suggests subatomic alteration, analog iso-
topes of the heretofore inviolate characters. A charac-
ter is the smallest visual part of a notational system

Zebrackets: A score of years and delimiters

220 TUGboat, Volume 37 (2016), No. 2

that has semantic value. A glyph is one possible rep-
resentation of a character. Ligatures can be thought
of as locally context-sensitive glyph adaptation, as
can some kinds of accents, kerning, and hyphenation.
But Zebrackets represents a larger context sensitivity,
adapting symbols to the broader circumstances. In
an extreme case, its filters could be applied to an
entire document.

5.3 Analog articulation

Fonts can be thought of as embeddable in a mani-
fold3 @CK14�, and perturbations on this manifold are
equivalent to variations of the font characteristics.
Microtypography @Kar15� is an unexploited aspect
of font design and electronic publishing. Zebrack-
ets challenges the assumption that a glyph is the
smallest representation of a character that has se-
mantic value. Such capability hints at giving glyphs
depth, not in the sense of a 3D, sculptural sense
@Ann74� @FVJ11� @HF13�, but logical depth, in the
sense of alternate projections of a set of variations
on a character. Current technology discourages such
generality, and, since the character/glyph/font sys-
tem is so deeply and tightly interwoven with any
operating system, application, or program, tradi-
tional computer typography and character-handling
have a lot of inertia.4 Even the idioms for selection in
contemporary viewers have a resolution (understand-
ably enough) of the character level. It is impossible,
for instance, to select just an accent (without also
getting the letter to which it is attached). Even
generating kerning tables for systems like zebrack-
ets is somewhat daunting, suggesting the need for
algorithmic kerning.

5.4 Charactles

Authors Mancilla and Plaice @MP12� proposed the
charactle — a portmanteau word combining charac-
ter and tuple — as a generalization of characters and
glyphs. A charactle consists of an index into a dic-
tionary, along with some variant or versioning infor-
mation; it incorporates the Unicode character as a
special case. According to this model, a text would
be a sequence of charactles. The zebrackets pre-
sented in this paper are completely consistent with
this approach.

3 http://vecg.cs.ucl.ac.uk/Projects/projects_

fonts/projects_fonts.html
4 Of course, for specialized purposes, such as display fonts

and “Word Art” (as in Microsoft Word or PowerPoint), charac-
ters are unique. These are sort of “one-off”s, with no attempt
to optimize their rendering by caching them into OS tables:
singletons meant to be seen as much as read, leaning towards
the pictorial and away from the purely textual.

5.5 The future of literacy

The “take home message” is not only the extensi-
bility of parentheses and brackets, but the ability
to articulate any character, like a metaMETAFONT.
Every glyph, stroke, mark, and pixel should be de-
liberately and explicitly determined for the exact
circumstances of its apprehension. A character set
should not be precompiled as an operating system re-
source, a cache of common letter forms. Such a model
patronizes characters by treating them as cliches,
overused forms of expression. Digital typography,
electronic publishing, and computer displays allow
generalization of such forms by considering charac-
ters as semi-custom instances of a richly expressive
class, with factory (instantiation) specifications in-
cluding not only such qualities as font family, size,
and magnification, but also optical balance, reader
characteristics and preferences, and arbitrary rela-
tions with any other document qualities, a kind of ne-
gotiation between aspects. Factors related to reading
in the context of ubiquitous computing (“ubicomp”)
and IoT (“internet of things”) — such as ambient illu-
mination, whether a reader is wearing glasses or not,
and time of day — should be referenced as param-
eters to optimize legibility and experience @Coh14�.
Such exponential explosion of expression space, a
hoisting of a quantized model into a seemingly con-
tinuous one, can still run on a digital computer but
requires virtually arbitrary smoothness, promoting,
as it were, integers into reals, necessitating on-the-fly
compilation. Such display is optimally realtime, but
need not be, since a document browser could initially
display unadorned versions of characters, perhaps
preconditioned to reflect anticipated layout, dynami-
cally and progressively refreshing by swinging in the
embellished versions as they are generated.

References

�AB89� Jacques André and Bruno Borghi.
Dynamic fonts. In Jacques André and
Roger D. Hersh, editors, Raster Imaging
and Digital Typography, pages 198–204.
Cambridge University Press, 1989.
ISBN 0-521-37490-1.

�And90� Jacques André. The Scrabble font.
The PostScript Journal, 3(1):53–55, 1990.

@Ann74� Mitsumasa Anno. ABC Book
(in Japanese). Tankobon,
1974. ISBN-10 4-8340-0434-1,
ISBN-13 978-4834004342.

�AO89� Jacques André and Victor Ostromoukhov.
Punk: de METAFONT à PostScript.
Cahiers GUTenberg, 4:123–28, 1989.

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 221

@CK14� Neill D. F. Campbell and Jan Kautz.
Learning a manifold of fonts. ACM Trans.
Graph., 33(4):91:1–91:11, July 2014.

�Coh92� Michael Cohen. Blush and Zebrackets:
Two Schemes for Typographical
Representation of Nested Associativity.
Visible Language, 26(3+4):436–449,
Summer/Autumn 1992.
http://visiblelanguagejournal.com/

issues/issue/98/.

	Coh93� Michael Cohen. Zebrackets: A
Pseudo-dynamic Contextually Adaptive
Font. TUGboat, 14(2):118–122, July
1993. http://tug.org/TUGboat/tb14-2/

tb39cohen.pdf.

�Coh94� Michael Cohen. Adaptive character
generation and spatial expressiveness.
TUGboat, 15(3):192–198, September 1994.
Proceedings of the 1994 TUG Annual
Meeting, Santa Barbara, CA. http://tug.
org/TUGboat/tb15-3/tb44cohen.pdf.

@Coh14� Michael Cohen. From Killing
Trees to Executing Bits: A Survey
of Computer-Enabled Reading
Enhancements for Evolving Literacy.
In VSMM: Proc. Int. Conf. on
Virtual Systems and Multimedia,
Hong Kong, December 2014.
http://www.vsmm2014.org.

 dK25� Guillaume Apollinaire
(Wilhelm Apollinaris de Kostrowitzky).
Poémes de la paix et de la guerre
1913–1916 (Poems of war and peace
1913–1916). Nouvelle Revue Française,
Paris, 1918, 1925.

@FVJ11� FL@33, Tomi Vollauschek, and
Agathe Jacquillat. The 3D Type
Book. Laurence King Publishing,
2011. ISBN-10 1856697134,
ISBN-13 978-1856697132.

�Har07� Yannis Haralambous. Fonts & Encodings.
O’Reilly, 2007. ISBN-10 0-596-10242-9,
ISBN-13 978-0-596-10242-5.

@HF13� Steven Heller and Louise Fili.
Shadow Type: Classic Three-Dimensional
Lettering. Princeton Architectural
Press, Thames and Hudson Ltd.,
2013. ISBN-10 1616892048,
ISBN-13 978-1616892043.

@Kar15� Peter Karow. Digital typography with
Hermann Zapf. TUGboat, 36(2):95–99,
2015. http://tug.org/TUGboat/tb36-2/

tb113zapf-karow.pdf.

 KH08� Robert Klanten and Hendrik Hellige,
editors. Playful Type: Ephemeral
Lettering & Illustrative Fonts.
Dgv, 2008. ISBN-10 3899552202,
ISBN-13 978-3899552201.

�Len91� John Lennard. But I Digress:
Parentheses in English Printed
Verse. Oxford University Press, 1991.
ISBN 0-19-811247-5.

@MP12� Blanca Mancilla and John Plaice.
Charactles: More than characters. In
Cyril Concolato and Patrick Schmitz,
editors, ACM Symposium on Document
Engineering, pages 241–244. ACM, 2012.

� Michael Cohen
University of Aizu, Japan
mcohen (at) u-aizu.ac.jp

� Blanca Mancilla
Mentel, Montreal, Canada
blancalmancilla (at) gmail.com

� John Plaice
Grammatech, Ithaca, USA;
UNSW, Sydney, Australia
johnplaice (at) gmail.com

Zebrackets: A score of years and delimiters

