
TUGboat, Volume 40 (2019), No. 1 61

TEX.StackExchange cherry picking, part 2:
Templating

Enrico Gregorio

Abstract

We present some examples of macros built with
expl3 in answer to users’ problems presented on
tex.stackexchange.com, to give a flavor of the lan-
guage and explore its possibilities.

1 Introduction

This is the second installment1 of my cherry picking
from questions on TEX.SX that I answered using
expl3. As every regular of TEX.SX knows, I like to
use expl3 code for solving problems, because I firmly
believe in its advantages over traditional TEX and
LATEX programming.

This paper is mostly dedicated to “templating”,
an idea I’m getting fond of. There is actually a
“templating layer” for the future LATEX3, but it’s
not yet in polished shape. The Oxford Dictionary of
English tells us that the primary meaning of template
is “a shaped piece of rigid material used as a pattern
for processes such as cutting out, shaping, or drilling”,
more generally “something that serves as a model
for others to copy” and this is how I think about
templating here. This article is not about “document
templates”, the (often unfortunately bad) pieces of
code that users are sometimes forced to fill in.

Basically, the templating I’m going to describe
is achieved by defining a temporary function (macro,
if you prefer) to do some job during a loop. This
has the advantage of allowing us to use the stan-
dard placeholders such as #1, #2 and so on instead
of macros, as is done (for instance) with the popu-
lar \foreach macro of TikZ/PGF, with concomitant
expansion problems. For instance, with

\foreach \i in {1,2,3} { -\i- }

the loop code doesn’t “see” 1, 2 and 3, but \i, which
expands to the current value. In expl3 we have

\clist_map_inline:nn {1,2,3} { -#1- }

and this is possible by the same templating technique
I’ll describe.

There are a couple of unrelated topics, just to
show other applications of loops.

Technical note. The code shown here may differ
slightly from the post on TEX.SX, but the functional-
ity is the same. Sometimes I had afterthoughts,

1 For the first installment, “TEX.StackExchange
cherry picking: expl3”, see TUGboat 39:1, pp. 51–59,
tug.org/TUGboat/tb39-1/tb121gregorio-expl3.pdf.
Some terminology introduced there is used here without
explanation.

or decided to use new functions added to expl3
in the meantime. As in the first installment, the
code I show should be thought of as surrounded
by \ExplSyntaxOn and \ExplSyntaxOff (except for
macro calls), and \usepackage{xparse} is manda-
tory.

2 Euclid’s algorithm

I’ve taught algebra classes for a long time and the
Euclidean algorithm for the greatest common divi-
sor has always been a favorite topic, because it’s a
very good way to introduce several ideas, particu-
larly recursion. The algorithm consists in repeating
the same operations until we get to 0. Thus any
implementation must clearly show recursion at work.
Here’s the code for it.2 (Well, a reduced version
thereof for nonnegative numeric input only.)

\NewExpandableDocumentCommand{\euclid}{mm}

{

\egreg_euclid:nn { #1 } { #2 }

}

\cs_new:Nn \egreg_euclid:nn

{

\int_compare:nTF { #2 = 0 }

{ #1 } % end

{

\egreg_euclid:nf

{ #2 }

{ \int_mod:nn { #1 } { #2 } }

}

}

\cs_generate_variant:Nn \egreg_euclid:nn { nf }

Some implementations do a swap if the first
number is less than the second, but this is unnec-
essary, because the algorithm itself will perform it.
The terminating condition is reached when we get
a remainder of 0, in which case we output the first
number. Otherwise the function calls itself with the
first argument being the previous second one, and
the second argument being the current remainder of
the division.

Pure and simple: the only trick, for greater
efficiency, is to call a variant of the main function in
order to fully expand the mod operation.

It would be much more fun to implement the
mod operation in fully expandable fashion, but some-
body has already done it! Let’s enjoy laziness!

My answer also features a possibly interesting
\fulleuclid macro that prints the steps.

3 Mappings

Data can be available in “serial” form; expl3 has sev-
eral data types of this kind: clists (comma separated
lists), sequences and property lists. Further, token

2 https://tex.stackexchange.com/q/453877/

TEX.StackExchange cherry picking, part 2: Templating

62 TUGboat, Volume 40 (2019), No. 1

lists can be seen as a list of tokens (or braced groups).
For each of these data types expl3 provides mapping
functions that process each item of the given data.

The first toy problem consists in making a short
table of contents exploiting \nameref.3 The user
inputs something like
\procedurelist{

PM-tyinglaces,

PM-polishshoes,

PM-ironshirt

}

where the input is a comma separated list of labels
and the document contains something like
\section{Tying laces}\label{PM-tyinglaces}

for each label used. This should print a table with
section numbers in the first column and section titles
in the second column.
\NewDocumentCommand{\procedurelist}{m}

{

\begin{tabular}{cl}

\toprule

\multicolumn{1}{c}{\textbf{PM}} & \textbf{Name} \\

\midrule

\clist_map_function:nN

{ #1 }

__kjc_procedurelist_row:n

\bottomrule

\end{tabular}

}

\cs_new:Nn __kjc_procedurelist_row:n

{ \ref{#1} & \nameref{#1} \\ }

The \clist_map_function:nN command splits
its first argument at commas, trimming spaces before
and after each item and discarding empty items, and
then passes each item to the function specified as
the second argument. A variant is also available,
\clist_map_function:NN, which expects as its first
argument a clist variable.

In this case, the auxiliary function which the
mapping is handed to is a template for a table row.

In contrast to other approaches, the operation
is not hindered by being in a table, because the
complete list of tokens
__kjc_procedurelist_row:n {PM-tyinglaces}

__kjc_procedurelist_row:n {PM-polishshoes}

__kjc_procedurelist_row:n {PM-ironshirt}

is built before TEX starts expanding the first macro.
A similar approach with

\clist_map_inline:nn

{ #1 }

{ \ref{##1} & \nameref{##1} \\ }

would not work here, because the mapping would
start in a table cell and end in another one, which is
impossible.

However, the user here is far-seeing and is wor-
ried about their boss not liking the appearance of

3 https://tex.stackexchange.com/q/451423/

the table or perhaps wanting such tables printed in
slightly different ways across the document.

We can make the auxiliary function variable!
Here’s the code.

\NewDocumentCommand{\procedurelist}{om}

{

\group_begin:

\IfValueT{#1}

{

\cs_set:Nn __kjc_procedurelist_row:n { #1 }

}

\begin{tabular}{cl}

\toprule

\multicolumn{1}{c}{\textbf{PM}} & \textbf{Name} \\

\midrule

\clist_map_function:nN

{ #2 }

__kjc_procedurelist_row:n

\bottomrule

\end{tabular}

\group_end:

}

\cs_new:Nn __kjc_procedurelist_row:n

{ \ref{#1} & \nameref{#1} \\ }

We added an optional argument to the main macro.
If this argument is present, then it will be used to
redefine the auxiliary function. Grouping is used in
order not to clobber the standard meaning of the
auxiliary function. The same call as before would
print the same table, but a call such as

\procedurelist[\ref{#1} & \textit{\nameref{#1}} \\]{

PM-tyinglaces,

PM-polishshoes,

PM-ironshirt

}

would apply \textit to each section title. This is
what I call templating.

4 Dummy variables

A user asked for a \replaceproduct macro so that

\replaceproduct{p_i^{\varepsilon_i}}{3}{n}

produces
pε11 pε33 pε33 . . . pεnn

The idea is that the “dummy variable” i is replaced
by the numbers 1, 2 and 3 (the value is given in
the second argument) and by n at the end (third
argument).4

The idea of templating and using #1 does not
have the same appeal as before, because the call
would need to be

\replaceproduct{p_#1^{\varepsilon_#1}}{3}{n}

which is more obscure. What if we make the dummy
variable an optional argument, with default value i?
Maybe we need to use k because the main template
contains the imaginary unit or we want to be obscure
at all costs (see the final example).

4 https://tex.stackexchange.com/q/448389/

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 63

However, TEX doesn’t allow placeholders for
parameters other than #1, #2 and so on — but we
have expl3 regular expression search and replace. Can
we store the template in a token list variable and
replace all appearances of the dummy variable with
#1? Certainly we can: assuming that the template
is the second argument in the macro we’re going to
define, we can do

\tl_set:Nn \l__egreg_rp_term_tl { #2 }

Now we can search and replace the dummy variable,
which is given as (optional) argument #1, by

\regex_replace_all:nnN

{ #1 } % search

{ \cB\{ \cP\# 1 \cE\} } % replace

\l__egreg_rp_term_tl % what to act on

so that each appearance of i (or whatever letter
we specified in the optional argument) is changed
into {#1}.5 The prefix \cB to \{ is not standard in
regexes6; in TEX we need to be careful with category
codes, so \cB says that the next token must be given
the role of a “begin group” characters. Similarly for
\cE as “end group” and \cP for “parameter”.

We now face the final problem: how to pass
this to the auxiliary function that serves as internal
template? We should do

\cs_set:Nn __egreg_rp_term:n {〈template〉}

but the template is stored in a token list variable that
we need to get the value of. That’s a known problem
and expl3 already has the solution: the argument
type V, that denotes take the value of the variable
and pass it, braced, as an argument to the main
function. So we just need to define a suitable variant
of \cs_set:Nn, namely

\cs_generate_variant:Nn \cs_set:Nn { NV }

We now have all the ingredients and we can bake our
cake:

\NewDocumentCommand{\replaceproduct}{O{i}mmm}

{% #1 = item to substitute

% #2 = main terms

% #3 = first terms

% #4 = last term

\group_begin:

\egreg_rp:nnnn { #1 } { #2 } { #3 } { #4 }

\group_end:

}

\tl_new:N \l__egreg_rp_term_tl

\cs_generate_variant:Nn \cs_set:Nn { NV }

\cs_new:Nn \egreg_rp:nnnn

{

\tl_set:Nn \l__egreg_rp_term_tl { #2 }

\regex_replace_all:nnN

{ #1 } % search

{ \cB\{\cP\#1\cE\} } % replace

\l__egreg_rp_term_tl % what to act on

5 TEXnical remark: things are set up so that # tokens are
not unnecessarily doubled when stored in a token list variable.

6 Informal abbreviation for “regular expressions”.

\cs_set:NV __egreg_rp_term:n \l__egreg_rp_term_tl

\int_step_function:nN { #3 } __egreg_rp_term:n

\cdots

__egreg_rp_term:n { #4 }

}

The only new bit is \int_step_function:nN, which
is similar to the mapping functions, but uses the
most natural series: the numbers from 1 up to the
integer specified as end; each number, in its explicit
decimal representation, is passed to the auxiliary
function as in the mapping of the previous section.
In the example call, the third argument is 3, so there
will be three steps.

The function \int_step_function:?N comes
in three flavors:

\int_step_function:nN

\int_step_function:nnN

\int_step_function:nnnN

In the two-argument version we only specify the
end, in the three-argument version we specify the
start and end; in the full version the three n-type
arguments specify starting point, step and final point.
Thus the calls

\int_step_function:nN {3} __egreg_rp_term:n

\int_step_function:nnN {1} {3} __egreg_rp_term:n

\int_step_function:nnnN {1} {1} {3} __egreg_rp_term:n

are equivalent.
We can call the macro like

\[\replaceproduct{p_i^{\varepsilon_i}}{3}{m} =

\replaceproduct[j]{i_j^{\eta_j}}{2}{n} \]

to get

pε11 pε12 pε13 . . . pεmm = iη11 iη22 . . . iηnn

The same idea can be used for a “macro factory”
where the task is to define one-parameter macros us-
ing the keyword PARAM in place of #1.7 The problem
here is that apparently plain TEX is used, but it’s
not really difficult: expl3 can also be used on top
of it.

The input \foo{qix}{:: PARAM ::} should be
equivalent to

\def\barqix#1{:: #1 ::}

and this can be accomplished easily.

\input expl3-generic

\ExplSyntaxOn

\tl_new:N \l__egreg_param_tl

\cs_new_protected:Npn \foo #1 #2

{

\tl_set:Nn \l__egreg_param_tl { #2 }

\regex_replace_all:nnN

{ PARAM }

{ \cP\#1 }

\l__egreg_param_tl

\cs_set:NV __egreg_param:n \l__egreg_param_tl

7 https://tex.stackexchange.com/q/355568/

TEX.StackExchange cherry picking, part 2: Templating

64 TUGboat, Volume 40 (2019), No. 1

\cs_new_eq:cN {bar#1} __egreg_param:n

}

\cs_generate_variant:Nn \cs_set:Nn { NV }

\ExplSyntaxOff

\foo{qix}{:: PARAM ::}

\barqix{hi world}

\bye

The function __egreg_param:n is temporary, but
necessary: a variant such as \cs_new:cpV cannot
be defined because of the parameter text which can
consist of an arbitrary number of tokens to jump over.
Here I exploit the fact that \cs_set:Nn computes
its parameter text from the signature.

5 Double loops

We want to be able to generate and print a triangular
diagram such as

1× 1 = 1
2× 1 = 2 2× 2 = 4
3× 1 = 3 3× 2 = 6 3× 3 = 9
4× 1 = 4 4× 2 = 8 4× 3 = 12 4× 4 = 16

with as little effort as possible.8

This calls for using array, but it also needs
a double loop, which makes it inconvenient to use
\int_step_function:nN as before, because only one
argument is passed to the auxiliary function. The
posted answer by Jean-François Burnol (jfbu) is as
usual very nice, but not easily extendable — we may
want only the operations, instead of also showing the
result; or to do addition instead of multiplication; etc.

My idea is to define a macro \lowertriangular

which takes as arguments the number of rows and
what to do with the indices in each cell; for instance,
the diagram above would be generated by

\lowertriangular{4}{#1\times #2 = \inteval{#1*#2}}

The macro \inteval is provided by xfp, which is
part of the xparse family accompanying expl3 and
needs to be loaded. A lower triangular matrix can
be generated by

\left[\lowertriangular{4}{a_{#1#2}}\right]

After all, I teach linear algebra courses, so triangular
matrices are my bread and butter.

The placeholders #1 and #2 stand, respectively,
for the row and column index.

We need nested loops, the outer one stepping
the row index, the inner one stepping the column
index, but only up to the row index. However, since
we have to make an array, we need to build the body
beforehand and then feed it to the matrix building en-
vironment. Small complication: the indices provided

8 https://tex.stackexchange.com/q/435349/

by the outer loop are called ##1, those relative to the
inner loop are called ####1 (it’s quite predictable,
but has to be mentioned).

As I said, we have to use the “inline” form for
the loop, that is, \int_step_inline:nn (which has
siblings like those described before for the similar
\int_step_function:nN). When we are at the “cell
level”, we will use the auxiliary function defined with
the template given as second argument to the user
level macro.

\NewDocumentCommand{\lowertriangular}{mm}

{

\group_begin:

\egreg_lt_main:nn { #1 } { #2 }

\group_end:

}

\tl_new:N \l__egreg_lt_body_tl

\cs_new_protected:Nn \egreg_lt_main:nn

{

% an auxiliary function for massaging the entries

\cs_set:Nn __egreg_lt_inner:nn { #2 }

% clear the table body

\tl_clear:N \l__egreg_lt_body_tl

% outer loop, #1 rows

\int_step_inline:nn { #1 }

{

% inner loop, ##1 columns

\int_step_inline:nn { ##1 }

{

% add the entry for row ##1 (outer loop),

% column ####1 (inner loop)

\tl_put_right:Nn \l__egreg_lt_body_tl

{ __egreg_lt_inner:nn { ##1 } { ####1 } }

% if ##1 = ####1 end the row,

% otherwise end the cell

\tl_put_right:Nx \l__egreg_lt_body_tl

{

\int_compare:nTF { ##1 = ####1 }

{ \exp_not:N \\ } % end row

{ & } % end cell

}

}

}

% output the table

\begin{array}{ @{} *{#1}{c} @{} }

\l__egreg_lt_body_tl

\end{array}

}

An almost straightforward modification of the
code allows for producing upper as well as lower
triangular matrices. It’s sufficient to add a test to
make the inner loop go on all the way, instead of
stopping at the diagonal.

\NewDocumentCommand{\lowertriangular}{mm}

{

\group_begin:

\egreg_tm_main:nnn { #1 } { #2 } { >= }

\group_end:

}

\NewDocumentCommand{\uppertriangular}{mm}

{

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 65

\group_begin:

\egreg_tm_main:nnn { #1 } { #2 } { <= }

\group_end:

}

\tl_new:N \l__egreg_tm_body_tl

\cs_new_protected:Nn \egreg_tm_main:nnn

{% #1 = size, #2 = template, #3 = < or >

% an auxiliary function for massaging the entries

\cs_set:Nn __egreg_tm_inner:nn { #2 }

% clear the table body

\tl_clear:N \l__egreg_tm_body_tl

% outer loop, #1 rows

\int_step_inline:nn { #1 }

{

% inner loop, #1 columns

\int_step_inline:nn { #1 }

{

% add the entry for row ##1 (outer loop),

% column ####1 (inner loop) only if

% ##1 #3 ####1 is satisfied

\int_compare:nT { ##1 #3 ####1 }

{

\tl_put_right:Nn \l__egreg_tm_body_tl

{ __egreg_tm_inner:nn { ##1 } { ####1 } }

}

% if ####1 = #1 end the row,

% otherwise end the cell

\tl_put_right:Nx \l__egreg_tm_body_tl

{

\int_compare:nTF { ####1 = #1 }

{ \exp_not:N \\ } % end row

{ & } % end cell

}

}

}

% output the table

\begin{array}{ @{} *{#1}{c} @{} }

\l__egreg_tm_body_tl

\end{array}

}

Now \uppertriangular{5}{a_{#1#2}} prints the
body of an upper triangular matrix and my linear
algebra course can go on. Particularly because I can
also define
\NewDocumentCommand{\diagonal}{mm}

{

\group_begin:

\egreg_tm_main:nnn { #1 } { #2 } { = }

\group_end:

}

and get the diagonal matrices I need. I leave as an
exercise the further extension of defining an optional
template for filling the otherwise empty cells.

The integer comparison \int_compare:n(TF)

accepts quite complex tests in its first argument,
but here we’re interested in what operators are al-
lowed; they are ‘= < > != <= >=’ and their meaning
should be obvious. In a perfect world they would be
‘= < > ≠ ≤ ≥’, but let’s be patient.9

9 This could easily be added for Unicode engines such as
X ETEX or LuaTEX; it would be more complicated to support

6 A templating puzzle

First let me present the code:10

\NewDocumentCommand{\automagic}{mm}

{

\begin{figure}

\clist_map_inline:nn { #1 }

{

\cs_set:Nn __oleinik_automagic_temp:n

{

\caption { #2 }

}

\begin{subfigure}[t]{0.33\textwidth}

\includegraphics[

width=\textwidth,

]{example-image-##1}

__oleinik_automagic_temp:n { #1 }

\end{subfigure}

}

\end{figure}

}

If one uses

\automagic{a,b,c}{Figure #1 from the set: ‘‘##1’’}

the result would show the three subcaptions

This is figure a from the set: “a,b,c”
This is figure b from the set: “a,b,c”
This is figure c from the set: “a,b,c”

The trick is that \clist_map_inline:nn does
its own templating. The interested reader may en-
joying solving the puzzle.

7 ISBN and ISSN

Every book has a number, called ISBN (International
Standard Book Number) and each serial journal has
an ISSN (International Standard Serial Number).

Originally, ISBN consisted of ten digits (with
the final one being possibly X); later the code was
extended to thirteen digits, but in a way that allowed
old numbers to fit in the scheme by adding ‘978’ at
the beginning and recomputing the final digit, which
is a checksum. For instance, The TEXbook originally
had ISBN 0201134489, while more recent editions
have 9780201134483. After the leading 978 there
is a 0, which means the book has been published
in an English-speaking country. The rest denotes
the publisher and the issue number internal to the
publisher. Books published in Brazil will start with
97865 or 97885; books published in Italy with either
97888 or 97912. The 979 prefix is a more recent
extension for coping with a greater number of books.

On the contrary, the eight digit ISSN doesn’t
convey information about the place of publication;
it’s basically a seven digit number with a final check-
sum (which can be X). Why this strange possibility?

legacy 8-bit engines and those symbols in every encoding that
has them. Code portability is much more important.

10 https://tex.stackexchange.com/q/410913/

TEX.StackExchange cherry picking, part 2: Templating

66 TUGboat, Volume 40 (2019), No. 1

Because the checksum is computed modulo 11, so the
remainder can be from 0 to 10 and X represents 10.
This is also the case for old style ISBN, whereas the
new codes compute the checksum modulo 10.

The algorithm for verifying correctness of an old
ISBN is simple: the first digit is multiplied by 10,
the second by 9 and so on up to the last digit (or X)
which is multiplied by 1. All numbers are added and
the result should be a multiple of 11. This method is
guaranteed to catch errors due to transpositions of
adjacent digits, but is not otherwise foolproof. For
ISSN it is the same, but starting with multiplication
by 8.

For a new style ISBN, the first digit is multiplied
by 1, the second by 3, the third by 1 and so on,
alternating 1 and 3. The sum of all numbers so
obtained should be a multiple of 10 (no X needed).

We would like to have a macro for checking the
validity of an ISBN or ISSN.11 The package ean13isbn
can be used for printing the bar code corresponding
to a valid ISBN.

I provided a solution with TEX arithmetic a
while ago. Now it’s time to do it in expl3. The
numbers may be presented with various hyphens,
for separating the relevant information, but this is
neither recommended nor required. Thus the macros
first remove all hyphens and act on the string of
numerals that result.

Since the methods for computing checksums are
very similar, we can dispense with much code dupli-
cation. I define two user level macros, \checkISBN
and \checkISSN. Both first remove the hyphens and
then check the lengths. If this test passes, control
is handed to a function that has as arguments the
length and the modulo (11 for ISSN and old style
ISBN, 10 for new style ISBN). The multipliers are
kept in constant sequences defined beforehand.

This function will set a temporary sequence
equal to the one corresponding to the length, then
computes the checksum and the remainder of the
division with the prescribed modulo. If the remainder
is 0, the code is deemed valid.

An important feature we exploit is that in the
first and third arguments to \int_compare:nNnTF

any integer denotation is allowed, with full expansion;
so we can use our friend \int_step_function:nN to
extract the multiplier and the digit, insert * between
them (for multiplication) and add a trailing +. The
final digit is treated specially, because it may be X;
in this case 10 is used.

\NewDocumentCommand{\checkISBN}{m}

{

__egreg_check_normalize:Nn

11 https://tex.stackexchange.com/q/39719/

\l__egreg_check_str

{ #1 }

% ISBN can have length 10 or 13

\int_case:nnF { \str_count:N \l__egreg_check_str }

{

{10}{__egreg_check:nn { 10 } { 11 }}

{13}{__egreg_check:nn { 13 } { 10 }}

}

{Invalid~(bad~length)}

}

\NewDocumentCommand{\checkISSN}{m}

{

__egreg_check_normalize:Nn

\l__egreg_check_str

{ #1 }

% ISSN must have length 8

\int_compare:nNnTF

{ \str_count:N \l__egreg_check_str } = { 8 }

{ __egreg_check:nn { 8 } { 11 } }

{Invalid~(bad~length)}

}

\str_new:N \l__egreg_check_str

\seq_const_from_clist:cn {c_egreg_check_8_seq}

{ 8,7,6,5,4,3,2,1 }

\seq_const_from_clist:cn {c_egreg_check_10_seq}

{ 10,9,8,7,6,5,4,3,2,1 }

\seq_const_from_clist:cn {c_egreg_check_13_seq}

{ 1,3,1,3,1,3,1,3,1,3,1,3,1 }

% remove hyphens

\cs_new_protected:Nn __egreg_check_normalize:Nn

{

\str_set:Nn #1 { #2 }

\str_replace_all:Nnn #1 { - } { }

}

% the main macro

\cs_new_protected:Nn __egreg_check:nn

{% #1 = length, #2 = modulo

% use the appropriate constant sequence

\seq_set_eq:Nc

\l__egreg_check_seq

{ c_egreg_check_#1_seq }

% compute the checksum and check it

\int_compare:nNnTF

{

\int_mod:nn

{ __egreg_check_aux_i:n { #1 } }

{ #2 }

}

= { 0 }

{Valid}

{Invalid~(bad~checksum)}

}

\cs_new:Nn __egreg_check_aux_i:n

{% do a loop from 1 to 7, 9 or 12

\int_step_function:nN

{ #1-1 }

__egreg_check_aux_ii:n

% and add the last digit

\str_if_eq:eeTF

{ \str_item:Nn \l__egreg_check_str { #1 } }

{ X }

{ 10 }

{ \str_item:Nn \l__egreg_check_str { #1 } }

}

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 67

% the auxiliary function extracts the items from

% the sequence (multiplier) and the string (digit)

\cs_new:Nn __egreg_check_aux_ii:n

{

\seq_item:Nn \l__egreg_check_seq { #1 }

*

\str_item:Nn \l__egreg_check_str { #1 }

+

}

Check with the following test:

\checkISBN{12345} % invalid

\checkISBN{111111111X} % invalid

\checkISSN{1234-56789} % invalid

\checkISSN{1234-567X} % invalid

\checkISBN{0201134489} % TeXbook

\checkISBN{978-0201134483} % TeXbook

\checkISSN{0896-3207} % TUGboat

With the same idea one could devise a fully
expandable macro that takes as input a string of
digits, applies a sequence of weights and computes a
check digit based on a modulo operation.

8 Catcode tables

Every TEX user is fond of category codes, particularly
when they put sticks in the wheels.12 How to print
on the terminal and log file the current status of
category codes?13

We need a macro that calls a loop; with legacy
TEX engines, the table is limited to the range 0–255,
but with Unicode engines we can go much further.
Another issue is that characters in the range 0–31
and 127–255 may fail to print in the log file, so I’ll
adopt for them the usual ^^〈char〉 or ^^〈char〉〈char〉
convention. For instance, character 0 is represented
by ^^@, character 127 by ^^?, but character 128 by
^^80.

The macro can be called like \catcodetable,
\catcodetable[255] or \catcodetable[0-255] all
meaning the same thing: no optional argument im-
plies 0-255; a single number specifies the end point,
starting from 0; two numbers separated by a hyphen
specify start and end points.

I use an \int_step_function:nnnN loop, the
auxiliary function prints the code point (in decimal),
then a representation of the character, then its cate-
gory code in verbose mode. The interesting bit here,
besides the complex tests for \int_compare:nTF, is
\char_generate:nn. This function takes as argu-
ments two numeric expressions; the first one denotes
the code point, the second one the category code to
assign. Of course only some of these catcodes are
meaningful: 9, 14 and 15 aren’t; also 13 cannot (yet)
be used with X ETEX. I use here 12, for safety.

12 In Italian we say mettere i bastoni fra le ruote when
somebody tries to impede our endeavor.

13 https://tex.stackexchange.com/q/60951/

\NewDocumentCommand{\catcodetable}

{

>{\SplitArgument{1}{-}}O{0-255}

}

{

\catcodetablerange#1

}

\NewDocumentCommand{\catcodetablerange}{mm}

{

\IfNoValueTF{#2}

{

\egreg_cctab:nn { 0 } { #1 }

}

{

\egreg_cctab:nn { #1 } { #2 }

}

}

\str_const:Nn \c_egreg_cctab_prefix_str { ^ ^ }

\cs_new_protected:Nn \egreg_cctab:nn

{

\int_step_function:nnnN

{ #1 } % start

{ 1 } % step

{ #2 } % end

\egreg_cctab_char:n

}

\cs_new_protected:Nn \egreg_cctab_char:n

{

\iow_term:x

{

Code~\int_to_arabic:n { #1 }:~(

\int_compare:nTF { 0 <= #1 < 32 }

{

\c_egreg_cctab_prefix_str

\char_generate:nn { #1+64 } { 12 }

}

{

\int_compare:nTF { #1 = 127 }

{

\c_egreg_cctab_prefix_str

\char_generate:nn { #1-64 } { 12 }

}

{

\int_compare:nTF { 128 <= #1 < 256 }

{

\c_egreg_cctab_prefix_str

\int_to_hex:n { #1 }

}

{

\char_generate:nn { #1 } { 12 }

}

}

}

)~__egreg_cctab_catcode:n { #1 }

}

}

\cs_new:Nn __egreg_cctab_catcode:n

{

\int_case:nn { \char_value_catcode:n { #1 } }

{

{0}{escape}

{1}{begin~group}

{2}{end~group}

{3}{math~shift}

{4}{alignment}

TEX.StackExchange cherry picking, part 2: Templating

68 TUGboat, Volume 40 (2019), No. 1

{5}{end~of~line}

{6}{parameter}

{7}{superscript}

{8}{subscript}

{9}{ignored}

{10}{space}

{11}{letter}

{12}{other~character}

{13}{active~character}

{14}{comment}

{15}{ignored}

}

}

A selected part of the output from \catcodetable

with 8-bit LATEX:

Code 0: (^^@) ignored

Code 1: (^^A) active character

Code 2: (^^B) active character

[...]

Code 31: (^^_) active character

Code 32: () space

Code 33: (!) other character

Code 34: (") other character

Code 35: (#) parameter

Code 36: ($) math shift

Code 37: (%) comment

Code 38: (&) alignment

Code 39: (’) other character

[...]

Code 63: (?) other character

Code 64: (@) other character

Code 65: (A) letter

Code 66: (B) letter

[...]

Code 90: (Z) letter

Code 91: ([) other character

Code 92: (\) escape

Code 93: (]) other character

Code 94: (^) superscript

Code 95: (_) subscript

Code 96: (‘) other character

Code 97: (a) letter

Code 98: (b) letter

Code 122: (z) letter

Code 123: ({) begin group

Code 124: (|) other character

Code 125: (}) end group

Code 126: (~) active character

Code 127: (^^?) ignored

Code 128: (^^80) active character

Code 129: (^^81) active character

[...]

Running \catcodetable["10FFFF] with X ELATEX
also works, and produces a 37 MiB14 log file ending
with

Code 1114109: (<U+10FFFD>) other character

Code 1114110: (<U+10FFFE>) other character

Code 1114111: (<U+10FFFF>) other character

)

Here is how much of TeX’s memory you used:

9287 strings out of 492956

183011 string characters out of 6133502

204291 words of memory out of 5000000

[...]

The <U+10FFFF> is an artifact of less on my system.
A small curiosity about the code for the string

constant that prints the two carets when needed:

\str_const:Nn \c_egreg_cctab_prefix_str { ^ ^ }

There must be a space between the carets, otherwise
the standard TEX convention would prevail and the
string would end up containing character 32+64 = 96,
that is, ‘. The (ignored) space in between the carets
separates them and so we get our desired two carets
in the output string.

Happy LATEX3ing!

� Enrico Gregorio
Dipartimento di Informatica
Università di Verona
and
LATEX Team
enrico.gregorio@univr.it

14 ”mebibyte”; 1 MiB = 220 bytes.

Enrico Gregorio

