170

FreeType_-MF_Module2: Integration of
METAFONT, GF, and PK inside FreeType

Jaeyoung Choi, Saima Majeed,
Ammar Ul Hassan, Geunho Jeong

Abstract

METAFONT is a structured font definition system
with the ability to generate variants of different font
styles by changing its parameter values. It does not
require creating a new font file for every distinct font
design. It generates the output fonts such as Generic
Font (GF) bitmaps and its relevant TEX Font Metric
(TFM) file on demand. These fonts can be utilized
on any size of resolution devices without creating a
new font file according to the preferred size. How-
ever, METAFONT (mf), GF, and Packed Fonts (PK,
a compressed form of GF) cannot be utilized beyond
the TEX environment as they require additional con-
version overhead. Furthermore, existing font engines
such as FreeType do not support such fonts.

In this paper, we propose a module for FreeType
which not only adds support for METAFONT, but also
adds support for GF and PK fonts in the GNU/Linux
environment. The proposed module automatically
performs the necessary conversions without relying
on other libraries. By using the proposed module,
users can generate variants of font styles (by mf) and
use them on devices of any desired resolution (via
GF). The proposed font module reduces the creation
time and cost for creating distinct font styles. Fur-
thermore, it reduces the conversion and configuration
overhead for TEX-oriented fonts.

1 Introduction

In recent times, technology has developed rapidly. In
such environments, there is always a need for better
and reliable mediums of communication. Tradition-
ally, fonts were used as a means of communication,
replacing pen and paper. A font was originally a
collection of small pieces of metal manifesting a par-
ticular size and style of a typeface. This traditional
technique was eventually replaced by a new concept
of digital systems. Modern fonts are implemented
as digital data files which contain sets of graphically
related characters, symbols, or glyphs. Modern fonts
are expected to provide both the letter shape as it is
presented on the metal and the typesetter’s informa-
tion on how to set position and replace the character
as appropriate.

The ability of science and technology to improve
human life is known to us. With the rapid increase in
development of science and technology, the world is
becoming “smart”. People are automatically served

TUGDboat, Volume 40 (2019), No. 2

by smart devices. In such smart devices, digital fonts
are commonly used, rather than analog fonts. A font
is the representation of text in a specific style and
size; therefore, designers can use font variations to
give meaning to their ideas in text. Text is still
considered the most common way to communicate
and gather information. Although different styles of
digital fonts have been created, still they do not meet
the requirements of all users, and users cannot alter
digital font styles easily [1]. A perfect application
for the satisfaction of users’ diversified requirements
concerning font styles does not exist [2].

Currently, popular digital fonts, whether bit-
map or outline, have limits on changing font style [3].
These limitations are removed by another type of
fonts, parameterized fonts, e.g., METAFONT, which
will be discussed in depth later. METAFONT pro-
vides the opportunity to font designers to create
different font styles by merely changing parameter
values. It generates TEX-oriented font files, namely
Generic Font (GF) bitmaps and its equivalent TEX
Font Metric (TFM) file. Thus, the usage of META-
FONT directly in today’s digital environment is not
easy, as it is specific to the TEX-oriented environ-
ment. Current font engines such as the FreeType
rasterizer do not support METAFONT, GF, or Packed
Font (PK, a compressed form of GF) files. In order to
use METAFONT, GF, or PK files, users have to specif-
ically convert them into equivalent outline fonts.

‘When METAFONT was created, standard hard-
ware was not fast enough to perform runtime conver-
sion of METAFONT into outline fonts. Therefore,
users were not able to take advantage of META-
FONT’s approach to get different font styles. To-
day, though, the hardware in typical systems is fast
enough to perform such conversions at runtime. If
such fonts were supported by the current font en-
gines, the workload of font designers would be re-
duced, compared to the designers having to create a
separate font file for every distinct style. This task
of recreation takes considerable time, especially in
case of designing CJK (Chinese-Japanese-Korean)
characters due to their complex letters and shapes.
Therefore, the benefits given by METAFONT can be
applied to CJK fonts to produce high quality fonts
in an efficient manner.

Our previous work, FreeType_MF_Module [10],
has accomplished direct usage of METAFONT, ex-
cluding TEX-based bitmap fonts, inside the FreeType
rasterizer. But the work was based on external soft-
ware such as mftrace during the internal conversion.
Such dependencies have disadvantages related to per-
formance and quality. Hence, the purpose of this
research is to present a module inside the FreeType

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2

that will directly use METAFONT, GF, and PK font
files in a GNU/Linux environment.

In Section 2, the primary objective of this work
is discussed. In Section 3, the METAFONT processing
with its compiler/interpreter such as the mf program
is explained. In Section 4, related research regard-
ing the conversion of METAFONT is discussed along
with their drawbacks. The implementation of the
proposed module is discussed in Section 5. The exper-
iments with the proposed module and performance
evaluation along with other modules of the FreeType
rasterizer are presented in Section 6. Section 7 gives
some concluding remarks.

2 Objective of the research

With the continuing enhancement of technology, ty-
pography needs to keep pace. The primary focus of
this work is to understand the TEX-oriented bitmap
fonts and find ways to utilize them in the GNU/Linux
environment using current font engines. Hence, the
objective of this research is:

1. To save the time designers require to study the
details of each font design from scratch and then
create font files for each distinct design.

2. To generate variants of different font styles us-
ing a parameterized font system such as METRA-
FONT.

3. To utilize the TEX-based bitmap fonts such as
GF, ordinarily specific to the TEX environment,
inside the FreeType font engine.

4. To increase the performance by using the com-
pact form of GF, Packed Font (PK).

5. To automatically set the magnification and res-
olution according to the display.

3 METAFONT processing with the mf
program

METAFONT, a font system to accompany TEX, was
created by D.E. Knuth [4]. It is an organized font
definition language which allows designers to change
the style of a font per their requirements by changing
values of parameters. METAFONT benefits the user
in that they do not need to create a different font file
for every unique style. It is considered a program-
ming language which contains drawing guidelines for
lines and curves which are later interpreted by the
interpreter/compiler of METAFONT, notably the mf
program, to render the glyph definitions into bitmaps
and store the bitmaps into a file when done. The
mf program determines the exact shapes by solving
mathematical equations imposed by the author of
the METAFONT program.

To process the METAFONT definitions using mf,
users must understand how to invoke mf [5]. Figure 1

171

shows the proper way of processing the METAFONT
using mf. (It can accept many other commands.)
Therefore, to get the correct GF file, the given set-
tings must be provided: mode, mag, and the META-
FONT file to process. The mode setting specifies the
printed mode; if this is omitted, a default of proof
mode will be used, in which METAFONT outputs at
a resolution of 2602dpi; this is not usually accom-
panied by a TFM file. The mag setting specifies a
magnification factor to apply to the font resolution
of the mode. As a result, mf generates the bitmap
font GF file, its relevant TFM font metric file, and a

log file.
JR—
o mag '

mou:':le META;CI NT

v
.,
|

| |

mf program

7 L] L
fm Xxxxgf Jog

Figure 1: mf invocation

For example, if the given mode specifies a resolution
of 600dpi, and the magnification is set to 3, the mf
program will perform calculations internally and gen-
erate the output in the form of a GF file at 1800dpi,
along with its corresponding TFM and a log file.

Generic Font (GF) format is a TEX-oriented
bitmap font generated by the mf program by taking
a METAFONT program as input along with other
information related to the output device. GF font
files are generated for a given output device with
a specific scaled size. Such font files contain the
character shapes in a bitmap form. However, the
metric information relevant to the characters is stored
in the TEX font metric (TFM) file. To make the GF
font usable for typesetting, its corresponding TFM
is required, as TEX reads only the font metric file,
not the GF. These fonts are utilized in TEX-based
typesetting systems.

To view or print, these fonts are converted into
device-independent (.dvi) files (the same format
that is output by TEX). Such a conversion is per-
formed by the utility gftodvi. Later, a DVI driver is
needed to interpret the .dvi file. In order to preview,
a utility such as xdvi (for Unix systems) is utilized.

The Packed Font (PK) format is also a bitmap
font format utilized in the TEX typesetting system.
It is obtained by compressing the GF font; the size of

FreeType_-MF_-Module2: Integration of METAFONT, GF, and PK inside FreeType

172

a PK is usually about half of its GF counterpart. The
content of a PK file is equivalent to a GF. The file
format is intended to be easy to read and interpreted
by the device drivers. It reduces the overhead of
loading the font into memory. Due to its compressed
nature, it reduces the memory requirements for those
drivers that load and store each font file into mem-
ory. PK files are also easier to convert into a raster
representation. This also makes it easy for a driver
to skip a particular character quickly if it knows that
the character is unused.

4 Related work
4.1 Existing font systems

VFlib [6] is a virtual font system that can handle
a variety of font formats, e.g., TrueType, Type 1,
and TEX bitmap fonts. It does not support META-
FONT fonts directly. It provides a software library
and a database font file which defines the implicit
and explicit fonts. Although it supports different
font formats, for some fonts it makes use of external
libraries, as shown in Figure 2. The font searching
mechanism utilized in VFlib is time consuming if
the font does not appear in its database. Therefore,
to handle such fonts, various font drivers are called
to check whether the requested font can be opened
or not. Hence, this font system is not suitable for
adding METAFONT support because of the extra
dependencies and need for database updates.

[vrib

External Libraries I

| FreeType | | T1lib | | Kpathsea

fuses 3 x

: TrueType Typel Font TeX-Bitmap
Font Driver Driver Font Driver

Figure 2: VFlib library dependencies

An alternative is the FreeType [7] font raster-
izer. It has the ability to handle different font styles
regardless of platform, unlike the T1lib [8] font ras-
terizer. It does not support the TEX-oriented bitmap
fonts and METAFONT fonts, but it provides intuitive
interfaces to allow users to add new font modules to
enhance the functionality of the engine. Therefore,
the FreeType font engine is the best choice for adding
the TEX-oriented bitmap fonts because it has no de-
pendency and database issues. If there is a module
inside FreeType which supports the TEX-oriented
bitmap fonts such as GF and PK, then users can
take advantage of these fonts, which are normally
specific to the TEX environment. No pre-conversion

TUGboat, Volume 40 (2019), No. 2

by utilizing DVI drivers will be required to preview
TgX-oriented fonts.

4.2 Research on adding METAFONT
support in existing font systems

As mentioned in Section 4.1, the FreeType font en-
gine provides the capability of adding new font mod-
ules. MFCONFIG [2] adds indirect support for META-
FONT inside FreeType. It provides an intuitive way
to use METAFONT in the GNU/Linux environment.
As shown in Figure 3, it allows users to utilize META-
FONT fonts, but has some dependency problems in
that it is built on the high-level font libraries Font-
config [9] and Xft. These dependencies affect the
performance of the module compared to the built-in
font driver modules of FreeType. Also, it is unable
to handle the TEX-oriented bitmap fonts such as
GF and PK, and adding support for the TEX bit-
map fonts would be inadequate as it’s not directly
implemented inside FreeType.

FreeType_MF_Module [10], a METAFONT mod-
ule inside the FreeType font engine, resolves the
dependency and performance issues which were seen
in MFCONFIG. Its performance is much faster than
MFCONFIG as it is implemented inside FreeType. Us-
ing METAFONT fonts requires transformation into
an outline font. Hence, FreeType_ MF_Module per-
forms this conversion, relying on mftrace. Although
this generates high-quality output, during conversion
font file information is lost due to the reliance on
mftrace.

As shown in Figure 4, when the request for a
METAFONT font is received by FreeType, it sends it
to FreeType_MF_Module. In its sub-module Trans-
formation Module, it calls mftrace, which has its
own drawbacks. It was specifically designed for trans-
lating METAFONT to Type 1 or TrueType formats
by internally utilizing the autotrace and potrace
libraries for conversion of bitmaps into vector fonts.
This approximate conversion gives an approximate
outline, and loses information about nodes and other
control points [11]. Also, it processes the METAFONT
font but is unable to process TEX-based GF and PK
bitmap fonts. Therefore, to add support for GF and
PK inside FreeType_MF_Module is inconvenient due
to the dependency on the external libraries, which
also decreases the performance of the module.

The proposed FreeType_MF_Module2 is intended
to resolve the problems of FreeType_.MF_Module,
and is able to support TEX bitmap fonts along with
METAFONT. The module can process METAFONT
and GF independently without relying on any exter-
nal software, e.g., mftrace. It can be easily installed

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2

gl

1 ¢METAFDNT request

173

Xft S | FONTCONFIG Modules
[=1
I T E Configuration Module 3
A A— I —— o
! . 2 ' Build from XML files TN
! Font Selection » FONTCONFIG =~ |- =
: O
T pTTTTmmeees Matching Module O
N It B N S s L
! Manage/Render .| X Render . AcceptFontPattemns ©| 2 | =
! Glyphs Extension | || .ol ,
N Return Matching Font |
(S — 5 . —
b e Y
'-- FreeType Font Engine
Figure 3: MFCONFIG internal architecture

/" FreeType
High-level Interface
Base Layer

Low-level Interfaces

v v
TTF Driver Typel Driver
Module Module

FreeType_MF
Module

Transformation
Module

poa

- L=
Linker Module ! i
bg

Administrator = N
= 1

Module i]
1o i

I 1

! H

! !

I 1

1 /

1 rd

Figure 4: FreeType_MF_Module architecture

and removed, as it is implemented just like the de-
fault FreeType driver module. Therefore, META-
FONT and TgX-oriented bitmap fonts can be used
just like any existing digital font format using the
proposed module.

5 Implementation of the module

To use digital fonts, FreeType is a powerful library
to render text on screen. It is capable of producing
high quality glyph images of bitmap and outline
font formats. When FreeType receives a request
for a font from the client application, it sends the
font file to the corresponding driver module for the
necessary manipulation. Otherwise, it displays an
error message to the client that the requested font
file is not supported. So, the proposed module is
directly installed inside FreeType to process requests
for METAFONT, GF, and PK fonts. As shown in
Figure 5, when FreeType receives a request for one of
these formats, it is sent on to FreeType_MF_-Module2.

As shown in Figure 6, the MF Script module calls
its submodule Font Style Extractor. This extracts
the font style parameters from the METAFONT file.
For example, if the METAFONT request given to the
module has the italic style, this will extract the italic
style parameters from the METAFONT file and apply
them. Once it extracts the font style parameters,
the corresponding outline will be generated, with
the requested style, by utilizing the Vectorization
submodule.

5.1 METAFONT (mf) request

When FreeType sends a METAFONT request to the
proposed FreeType_MF_Module2, its submodule Re-
quest Analyzer API analyzes the font file to determine
whether the requested is for a usable METAFONT file
or an incorrect one, by analyzing its style parameters.
After analyzing, it checks whether the requested font
has already been manipulated by the font driver or
if the new request has arrived via the Cache (again,

FreeType_-MF_-Module2: Integration of METAFONT, GF, and PK inside FreeType

174

FreeType)

| Base Layer Interface |

t 1 t]

TUGboat, Volume 40 (2019), No. 2

(.

TrueType Module

Typei Module

‘ FreeType_MF_Module2

5 Request Analyzer API —p%:_ __t

1T

- A .

e A A A e AR A A AR e sasEnan .
: Conversion Module oY H
. e
o L Script Handler N
= [. E
£ iy o Om R T Tim S E
< E i— S— EE
MF Script GF Soript PK Seript s

l

Qutline Converter

¥

Dutline Font File

Figure 5: FreeType_ MF_Module2 architecture

see Figure 5). If the requested font is found in the
Cache, it is sent directly back to FreeType for ma-
nipulation. But if the font is not found in the Cache,
it sends the METAFONT request to the Conversion
Module. After receiving the request, this utilizes a
submodule Script Handler. The core functionality
of the module is performed in this module. It calls
the scripting module based on the request. For a
METAFONT request, it calls the MF Script module,
passing the METAFONT file.

After extracting the character outlines, it is nec-
essary to remove redundant nodes from the shapes to
improve the quality. Therefore, a Node Redundancy
Analysis step receives the transformed METAFONT,
analyzes the outline contours, and removes the re-
dundant nodes from the font to create the simplified
outline. Once the simplification task is done, auto-
hinting is performed on the font with the Hinting
Module. After hinting, the corresponding outline
font will be generated with the Outline Converter
module and the outline font file sent to the mod-
ule Response API. This updates the Cache with

MF Script
| Font Style Extractor Module
¥
make imangutlme b
v
‘g Vectorization Module |
v
| Node Redundancy Analysis |
v

| Hinting Module |

Figure 6: MF Script internal architecture

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2

GF Script

Extractor Module

o Font Info Extractor

|]-1‘ Image Extractor ‘

| n Merge Extracted Info Module ‘

“5 make images abc

#VECIOIIZE

Outline Extractor ‘

v
Simplify Module |

K
®

Simplified Outline

Figure 7: GF Script internal architecture

the newly generated outline font for reusability and
high performance. After updating, FreeType renders
this outline font that was created from the META-
FONT with the requested style parameter values.

5.2 Generic Font (GF) request

When FreeType sends a GF request to the proposed
module, again, the requested font goes first to the
Request Analyzer API module. This checks whether
the requested GF font has been converted with cor-
rect use of the mf compiler by analyzing the device
specific information. If the requested GF file was
not generated correctly, the Request Analyzer API
module will not proceed, as it has to compute file
names using the device resolution and magnification
font parameters. On the other hand, if the GF font
is generated by correct use of mf, then its TEX font
metric file must exist.

For a GF request, its corresponding TFM must
be provided for internal computations related to char-
acter shapes. (Similarly, TEX only reads the TFM
instead of GF as all the relevant information is pro-
vided by the TFM). After the Request Analyzer API
module analyzes the GF request, it checks in the
Cache to see if the manipulated font exists. If the re-
quested font does not exist in the Cache, the request
is forwarded to the Conversion Module where the
Script Handler submodule handles the GF request

175

PK Script

| Extractor Module |
.pk
Raster Info Extraction

h 4
| Autotracing Module |

v

| Outline Extractor Module |

v

| Outline Contour Analysis Module |

Figure 8: PK Script internal architecture

along with its companion TFM file. As shown in
Figure 7, when GF Script receives the GF file, its
submodule Extractor Module contains the main func-
tionality. Its internal module Font Info Extractor
extracts the font-related information from the TEX
font metric file as well as a sequence of bitmaps at a
specified resolution from the GF file.

After extraction, it merges the extracted infor-
mation and makes the GF file usable in the form of
character images via Merge Extracted Info module.
From the bitmap font, it makes character images.
After merging and creating the vector images, it ex-
tracts the outline of the characters via the Outline
Extractor module. After extracting the outline, it
sends the extracted outline characters to the Sim-
plify module, which, as described above, analyzes
the font and removes the redundant nodes from the
font to make high quality outlines. It then outputs
the simplified outline using the Outline Converter
module internally. The newly created outline font
is sent to the Response API module, which updates
the Cache with the generated outline font for later
reusability. Once the Cache is updated, it sends back
the response to the core FreeType module for further
processing. Lastly, FreeType renders this outline
font that was designed from the requested GF with
the styled parameter values at a specified resolution.

5.3 Packed Font (PK) request

A PK font request is handled with the same pro-
cess as described in Sections 5.1 and 5.2, up until
the Conversion Module. Once the Script Handler
receives the requested PK font, it passes control to
PK Script. As shown in Figure 8, the Extractor mod-
ule extracts the raster information from the packed
file. After extraction, it performs autotracing on

FreeType_-MF_-Module2: Integration of METAFONT, GF, and PK inside FreeType

176

the merged font via Autotracing Module, which out-
puts the character images. The Autotracing Module
not only uses an autotracing program, it improves
the basic result with additional functionality such as
auto-hinting and eliminating redundant nodes from
the font image. These enhancements result in high
quality output. Once done, it sends the transformed
output to the Outline Extractor Module where it ob-
tains the outline of the characters. After getting the
outline character images, it performs the outline con-
tour analysis and removes the redundant nodes from
the outlines using the submodule Outline Contour
Analysis. As before, it sends the simplified output
to the Outline Converter, and the generated outline
font file is sent to the Response API which updates
the Cache and sends to the corresponding FreeType
module for rendering.

The proposed module provides direct support
for METAFONT, GF, and PK. It is perfectly com-
patible with FreeType’s default module drivers. It
can manipulate the request with the desired style
parameters and scale size. As a result, it provides
better quality outline fonts without needing external
libraries.

6 Experiments and performance evaluation

To test the proposed module, an application server
is utilized. The application server is responsible for
rendering the text on the screen by receiving the font
file from FreeType along with the text requested
to be displayed. FreeType can only process those
fonts in formats which it supports. When the client
application sends the METAFONT, GF, or PK request
to FreeType, it internally processes the requested
font using the proposed module and sends the newly
generated outline font file, along with the input text,
to the application server to display on screen.

For testing purposes, the METAFONT font Com-
puter Modern is used. The Computer Modern fonts
are examined with the usual four styles: Normal,
Italic, Bold, and Bold+Italic. (We chose to use the
slanted roman instead of the cursive italic styles,
due to resolution considerations.) These styles are
generated by changing the METAFONT parameters.
To verify the quality of the proposed module results,
the authors used the same four styles of another font
family, FreeSerif. The sample text is composed of
words and characters, including the space character.

The same font family was used to test the origi-
nal FreeType_MF_Module, with the same four font
styles. Thus, changing the parameter values and
generating new styles are explained in [10]. The
same concept is applied to the proposed module for
experiments. The only difference comes in the cases

TUGDboat, Volume 40 (2019), No. 2

of GF and PK fonts. To manipulate such fonts, in-
formation about the printer device and resolution
is required. In the proposed module, the GF and
PK fonts are directly manipulated by the module
without requiring any DVI driver or previewer. It
accepts the input text by the client application and
internally calculates the font resolution in pixels per
inch. Afterwards, it internally processes the GF and
PK file as described in Sections 5.2 and 5.3 respec-
tively, and generates the necessary output with the
desired style.

When FreeType sends the METAFONT request
to the proposed module, it internally manipulates
the request by extracting the styled parameters from
the source file. The default style of Computer Mod-
ern METAFONT is generated by extracting the de-
fault parameters. The four font styles Normal, Bold,
Ttalic, and Bold+Italic are generated by the mod-
ule, and it generates output similar to that shown
in Figure 9(a—d), respectively. Using one Computer
Modern METAFONT file, different font styles can be
generated according to desires and requirements.

When FreeType receives a Generic Font request
from the client application server, it sends it to the
proposed module along with the input text, where it
extracts the font-related information from the TFM
file and resolution information from the GF file. Then
it internally calculates the font resolution in pixels
per inch by referring to a device definition. Later,
it generates the output for the resulting resolution,
as shown in Figure 9. The default style of Generic
Font is generated by extracting the default style
parameters at 1200dpi. The remaining font styles
such as Bold, Italic, and Bold+Italic are generated
by the module at the calculated resolution, with
results as shown in Figure 9(a—d), respectively. The
GF results differ from METAFONT slightly, due to
the variations in the resolution — the authors tested
the GF font with different magnifications at the time
of manipulation.

The GF font created by METAFONT has a rather
large size which takes considerable memory during
the manipulation. To reduce memory consumption,
it is converted into packed form using the utility
gftopk. PK files contain exactly the same informa-
tion and style parameters as the GF files. Therefore,
their resulting output differs only in performance,
rather than quality; again, Figure 9 shows the results.

The authors compared the obtained results with
the first FreeType_MF_Module. It is concluded that
the results are quite similar and the proposed module
handles the TEX-oriented bitmap fonts along with
METAFONT format inside FreeType, without reliance
on external software for the conversions.

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2

Metafont outputs the gf and tfm. Generic fo
-oriented bitmap font generated by the mf ¢
rogram by taking metafont file as an input
h other information related to the output de
font outputs the gf and tfn. Generic font is
nted bitmap font generated by the mf comp
m by taking metafont file as an input along
er information related to the output device.

177

Metafont outputs the gf and tfin. Generic fo
-oriented bitmap font generated by the mf o
rogram by taking metafont file as an input a
other information related to the output devi
font outputs the gf and tfin. Generic font is
nted bitmap font generated by the mf compi
am by taking metafont file as an input along
her information related to the output device.

(a) Normal style Packed Font output

(b) Bold style Packed Font output

Metafont outputs the gf and tfm. Generic F
—oriented bhitmap font generated hy the mif
rogram by taking metafont file as an input
h other information related to the output d
font outputs the gf and tfim. Generic font is
nted bitmap font generated by the mf comyp
m hy taking metafont file as an input alon

er information related to the ouwtpur device.

Metafont outputs the gf and tfim. Generic fo
-oriented bitmap font generated by the mf c
rogram by taking metafont file as an input 4
other information related to the output dev
font onutputs the gf and tfm. Generic font is
nted bitmap font generated by the mf compi
am by taking metafont file as an input along
her information related to the output device.

(c) Slanted style Packed Font output

(d) Bold-Slanted style Packed Font output

Figure 9: Text printed with Packed Font (PK) format

Table 1: Average time of rendering (in milliseconds)

Time efficiency of font modules (Average Time)
Style TrueType FreeType MF_ FreeType_MF_Module2
Font Driver Module METAFONT oF PK
Normal 4.5 ms (3-6) 6 ms Sms 6 ms 4 ms
Bold 4 ms (4-6) 7 ms 6 ms 6 ms 6 ms
Slanted 4 ms 6 ms 6 ms 5ms 4 ms
Bold + Slanted 5 ms (5-7) 8ms 8 ms 7 ms 6 ms

The authors have not only considered the qual-
ity of the generated font using the proposed module,
but also performance. As shown in Table 1, the per-
formance of FreeType_MF_Module is slightly slower
in processing the Bold and Bold+Italic font styles of
METAFONT. This takes time due to the dependency
on the external software such as mftrace. Therefore,
the proposed module overcomes such performance
and dependency issues by adding the functionality
integrating the bitmap font formats. GF fonts take a
little more time compared to PK, but less time than
METRAFONT, as it is already in a compiled form. PK
fonts take less time than either METAFONT or GF,
as it is the compressed form of GF.

The proposed FreeType_MF_-Module2 provides
parameterized font support. The proposed module
does not require any preconversion before submitting
such fonts to the FreeType rasterizer. Client appli-
cations which utilize FreeType can thus now also
utilize the TEX-oriented bitmap font formats GF and
PK, as well as METAFONT fonts, using the proposed
module. Such fonts can be used just as TrueType
or other font formats supported by FreeType, with
similar performance. The proposed module can be
utilized in the FreeType font engine as a default
driver module. The proposed module works in the
same fashion as the other driver modules in FreeType.
It is able to support real-time conversion in a modern
GNU/Linux environment.

FreeType_-MF_-Module2: Integration of METAFONT, GF, and PK inside FreeType

178

7 Conclusion

In this paper, a new module is proposed for the
FreeType font rasterizer which enhances its function-
ality by adding support for TEX-oriented parameter-
ized (METAFONT) and bitmap (GF and PK) fonts.
FreeType supports many font formats, but not these,
which originated in the TEX environment.

Although our recent studies provided a way
to utilize METAFONT fonts inside FreeType, it had
dependency issues which affected the performance
of the module. Furthermore, it could only handle
METAFONT requests. The proposed module over-
comes these issues and adds TEX-oriented bitmap
font support as well. With the proposed module,
users can use METAFONT, GF, and PK fonts without
needing other drivers for conversion. Therefore, with
the proposed module, users can now utilize these
fonts outside the TEX environment.

Furthermore, the proposed module overcomes
the disadvantage of outline fonts requiring users to
change font styles using only existing font files, thus
requiring a different font file to be created for every
distinct font style and size. Creating a new outline
font file for CJK fonts consumes significant time and
cost, as they have rather complicated shapes com-
pared to alphabet-based fonts. Various studies have
been conducted to implement CJK fonts, such as
Hongzi [14] and the use of a structural font generator
using METAFONT for Korean and Chinese [15]. It
might take a longer time to process CJK METAFONT
fonts, which have complicated shapes and several
thousands of phonemes. The proposed module op-
timization and utilization for the CJK fonts will be
considered in the future.

Acknowledgement

This work was supported by an Institute of Informa-
tion & Communications Technology Planning and
Evaluation (IITP) grant funded by the government
of Korea (MSIP) (No. 2016-0-00166, Technology De-
velopment Project for Information, Communication,
and Broadcast).

References

[1] S. Song. Development of Korea Typography
Industry Appreciating Korean Language, 2013.
www.korean.go.kr/nkview/nklife/2013_3/23_
0304 .pdf

[2] J. Choi, S. Kim, H. Lee, G. Jeong. MFCONFIG:
A METAFONT plug-in module for FreeType
rasterizer.

TUGboat 37(2):163-170 (TUG 2016 conference
proceedings).
tug.org/TUGboat/tb37-2/tb116choi.pdf

TUGDboat, Volume 40 (2019), No. 2

[3] Y. Park. Current status of Hangul in the
21st century [in Korean]. (The T') Type and
Typography magazine, vol. 7, August 2012.
www.typographyseoul.com/news/detail/222

[4] D. E. Knuth. Computers and Typesetting, Volume

C: The METAFONTbook. Addison-Wesley, 1996.

Web2c: A TEX implementation.

tug.org/web2c

[6] H. Kakugawa, M. Nishikimi, N. Takahashi,
S. Tomura, K. Handa. A general purpose
font module for multilingual application
programs. Software: Practice and Ezxperience,
31(15):1487-1508, 2001.
dx.doi.org/10.1002/spe.424

[7] D. Turner, R. Wilhelm, W. Lemberg. FreeType.
freetype.org

[5

[8] R. Menzner. A Library for Generating
Character Bitmaps from Adobe Type 1 Fonts.
inferiorproducts.com/docs/userdocs/t11lib/
t1lib_doc.pdf
[9] K. Packard. The Xft font library: Architecture

and users guide. Proceedings of the 5th annual
conference on Linur Showcase & Conference, 2001.
keithp.com/~keithp/talks/xtc2001/paper

[10] J. Choi, A. Hassan, G. Jeong.
FreeType_MF_Module: A module for using
METAFONT directly inside the FreeType
rasterizer. TUGboat 39(2):163-170 (TUG 2018
conference proceedings). tug.org/TUGboat/
tb39-2/tb122choi-freetype.pdf

[11] H.-W. Nienhuys. mftrace — Scalable fonts for
METAFONT. 2017. lilypond.org/mftrace

[12] M. Weber. Autotrace— converts bitmap to vector
graphics. 2002.
autotrace.sourceforge.net

[13] K. Pigka. Creating Type 1 fonts from METAFONT
sources: Comparison of tools, techniques and
results. Preprints for the 2004 Annual TUG
Meeting. tug.org/TUGboat/tb25-0/piska.pdf

[14] J. R. Laguna. Héng-zi: A Chinese METAFONT.
TUGhoat 26(2):125-128, 2005.
tug.org/TUGboat/tb26-2/laguna.pdf

[15] J. Choi, G. Gwon, M. Son, G. Jeong. Next
Generation CJK Font Technology Using the
Metafont. LetterSeed 15:87-101, Korea Society of
Typography, 2017.

o Jaeyoung Choi

Saima Majeed
Ammar Ul Hassan
Geunho Jeong

369 Sangdo-Ro, Dongjak-Gu

Seoul 06978, Korea

choi (at) ssu.ac.kr
saimamajeed089 (at) gmail.com
ammar (at) ssu.ac.kr
ghjeong (at) gensolsoft.com

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

www.korean.go.kr/nkview/nklife/2013_3/23_0304.pdf
www.korean.go.kr/nkview/nklife/2013_3/23_0304.pdf
tug.org/TUGboat/tb37-2/tb116choi.pdf
www.typographyseoul.com/news/detail/222
tug.org/web2c
dx.doi.org/10.1002/spe.424
freetype.org
inferiorproducts.com/docs/userdocs/t1lib/t1lib_doc.pdf
inferiorproducts.com/docs/userdocs/t1lib/t1lib_doc.pdf
keithp.com/~keithp/talks/xtc2001/paper
tug.org/TUGboat/tb39-2/tb122choi-freetype.pdf
tug.org/TUGboat/tb39-2/tb122choi-freetype.pdf
lilypond.org/mftrace
autotrace.sourceforge.net
tug.org/TUGboat/tb25-0/piska.pdf
tug.org/TUGboat/tb26-2/laguna.pdf

	Introduction
	Objective of the research
	Metafont processing with the mf program
	Related work
	Existing font systems
	Research on adding Metafont support in existing font systems

	Implementation of the module
	Metafont (mf) request
	Generic Font (GF) request
	Packed Font (PK) request

	Experiments and performance evaluation
	Conclusion

